
LEXRA, INC. CONFIDENTIAL

Lexra 6-Stage Products User’s Guide

February 1, 2002

Revision 5.0

This document is proprietary and confidential to Lexra Inc.
Copyright © 1998, 1999, 2000, 2002 Lexra Inc.

LEXRA, Inc.
2 University Park, 51 Sawyer Road

Waltham, MA 02154
Tel: 781-899 5799
Fax: 781-899 5769

Lexra 6-Stage Products User’s Guide Revision 5.0

ii LEXRA, INC. CONFIDENTIAL

LEXRA, INC. CONFIDENTIAL iii

LX4x80 User Guide Revision 5.0

Table of Contents

Lexra Development Environment..................................... 1
1.1 Overview ...1
1.2 RTL Design Database Overview...3
1.3 Requirements for the RTL Design Database...3
1.4 Installing the RTL Design Database..4
1.5 Configuring for PERL...6
1.6 Running Lconfig..6
1.7 Installing the LSDK...7
1.8 Running Rundvt for the First Time ...8
1.9 Understanding the RTL Design Database File Organization10
1.10 Customer Configurations...11

Using Lconfig.. 13
2.1 Overview ...13
2.2 When to Execute Lconfig..14
2.3 Running Lconfig..14
2.4 Lconfig Forms ...15
2.5 Forms Supplied by Lexra ..17
2.6 Files Produced by Lconfig...17

2.6.1 lxr_symbols.vh ...18
2.6.2 chip/sram_<type>_<data_type>_<depth>x<width>.v............................19
2.6.3 regression/*.inpfiles ...19
2.6.4 syn/syntrol/Makefile ...20

2.7 Diagnostic Messages ...20
2.7.1 Notice Messages ...20
2.7.2 Warning Messages..22
2.7.3 Error Messages ...23
2.7.4 Abort Messages...24
2.7.5 Internal Messages ...25

RTL Organization.. 27
3.1 Building Blocks ...27
3.2 Using the Lx0/Lx0c/Lx1/Lx2 Design Hierarchies28

3.2.1 Module Definitions ...29

LX4x80 User Guide Revision 5.0

iv LEXRA, INC. CONFIDENTIAL

Local Memory ..31
4.1 Memory Architecture and Configurability ..32

4.1.1 Available Options .. 32
4.1.2 IMEM and DMEM Controllers ... 35
4.1.3 Configuring the Memory Architecture.. 36

4.2 Memory Requirements ..37
4.2.1 RAM Function ... 38
4.2.2 RAM Timing .. 38
4.2.3 Critical Paths Involving RAMs... 40

4.3 Using Lexra's Generic RAM Models ..40
4.4 Using Library Vendors' RAM Models ..41
4.5 Direct Memory Access to Internal RAMs...43

4.5.1 Using Request/Grant... 43
4.5.2 Using Dual Ported Memories .. 44

4.6 Invalidating a Cache..44
4.6.1 Invalidating a Cache Completely... 44
4.6.2 Invalidating a Cache Line with an Aliased Approach 45
4.6.3 Invalidating a Cache Line by Uncached Reference 45
4.6.4 Invalidating a Cache by Using DMA.. 45
4.6.5 Invalidating a Cache Using Multi-port Memories................................... 46
4.6.6 Conclusion .. 46

4.7 ICACHE Locking..47
4.8 RAM Manufacturing or BIST Testing ..47
4.9 LX4280 Memory Specifics ...47
4.10 LX5280 Memory Specifics ...48
4.11 LX8000 Memory Specifics ...48

Using the LBC Interface..49
5.1 Configuring the LBC with Lconfig ...49

5.1.1 Configuring a Synchronous/Asynchronous Interface 49
5.1.2 Configuring Cache Policies ... 50
5.1.3 Configuring Read and Write Buffer Sizes ... 51

5.2 Lbus Device Design Rules ..52
5.2.1 LBUS Arbiters ... 52

5.3 Device Interconnections ..53
5.3.1 Connecting the Protocol Signals Using OR Gates................................ 54
5.3.2 Connecting the Address, Data, and Command Busses........................ 55

5.4 Using CBUS ..56

LEXRA, INC. CONFIDENTIAL v

LX4x80 User Guide Revision 5.0

Adding Instructions Using the Custom Engine Interface
(CEI) .. 57

6.1 Introduction ...57
6.2 Operation ...57

6.2.1 Instancing Custom Engines...58
6.2.2 Interface Signals..59
6.2.3 Available Opcodes...60

6.3 Implementation Details ...62
6.3.1 Pipeline Issues and Stalls..62
6.3.2 Exceptions and Invalidation...63
6.3.3 Dual Issue Considerations...65
6.3.4 Temporary Registers and MIPS-1 HI/LO...65
6.3.5 Timing Considerations...66

6.4 Waveforms ..67

Using the Coprocessor Interface (CI) 87
7.1 Coprocessor Overview ..87
7.2 Coprocessor Design Considerations..88
7.3 Coprocessor Waveforms ...90

EJTAG.. 105
8.1 Architectural Overview: How It Works ..106

8.1.1 Hierarchy and Block Diagram..106
8.1.2 Pinout Requirements ...107
8.1.3 Lexra JTAG TAP Controller ...108
8.1.4 COP0 Support: Debug Exception, Instructions, Registers108
8.1.5 Hardware Breakpoints ...110
8.1.6 Single-step Mode...110
8.1.7 DMA Capability ..110
8.1.8 PC Trace ...110

8.2 Designing with EJTAG ...113
8.2.1 Single Processor Debugging ...113
8.2.2 Multi-processor Debugging..114
8.2.3 Clocking...116
8.2.4 Using the Lexra EJTAG TAP Controller ..117
8.2.5 Reset Issues..118

8.2.5.1 Cold Reset ..119
8.2.5.2 Warm Reset..119
8.2.5.3 Software Reset ...119

LX4x80 User Guide Revision 5.0

vi LEXRA, INC. CONFIDENTIAL

8.2.6 Gate Count per Breakpoint ... 120
8.2.7 Memory Addressing .. 120
8.2.8 EJTAG Customer Probe Model... 121

8.3 Implementation Issues ...121
8.3.1 Special Requirements ... 121
8.3.2 Unimplemented Features from EJTAG Specification.......................... 121
8.3.3 Implemented Optional Features from EJTAG Specification................ 122

Testability...123
9.1 Internal Scan..124

9.1.1 Scan Methodology Overview .. 124
9.1.2 Internal Scan Options.. 125
9.1.3 Lconfig Options ... 126
9.1.4 Internal Scan Interface .. 127
9.1.5 Scan Enable Distribution... 129

9.2 Memory Scan Collar..130
9.2.1 Scan Collar Overview.. 130
9.2.2 Lconfig Option ... 130
9.2.3 Scan Collar Interface... 131

9.3 RAM Testing ...131
9.3.1 RAM Test .. 131
9.3.2 Lconfig Option ... 132
9.3.3 RAM Test Interface ... 132

9.4 ATPG Vectors ...133
9.4.1 ATPG Overview .. 133
9.4.2 ATPG Generation Process.. 135

9.5 Testability Statistics...138
9.5.1 Overview ... 138
9.5.2 Example .. 138
9.5.3 Interpreting ATPG Results .. 140

9.6 TAP Controller ..141
9.7 Additional Considerations for Reset and Clock Distribution................142

9.7.1 Clock Distribution .. 142
9.7.2 SLEEP and Clock Distribution... 145
9.7.3 Reset Distribution.. 145

Using the Rundvt Regression Environment151
10.1 Rundvt Simulators ...152
10.2 Setup..152
10.3 Using the Command-line Options...152

LEXRA, INC. CONFIDENTIAL vii

LX4x80 User Guide Revision 5.0

10.3.1 Standard Command-Line Options ...153
10.3.2 Advanced Options ...155
10.3.3 Passing Tests to Rundvt Through the Command Line........................165

10.4 Working with Test Lists ..167
10.4.1 Test List File Format ..168
10.4.2 Running Tests at the Rundvt Command Line......................................169

10.5 Simulation Flow ..170
10.6 Generating ASCII Traces in the Simulation Output..............................170

10.6.1 Tracing Through Hierarchical References...177
10.6.2 Sparse Memory Tracing ..178

Synthesizing the Lexra CPU.. 181
11.1 Overview ...181
11.2 Setting up the Synthesis Environment...181

11.2.1 .synopsys_dc.setup ...182
11.2.2 dont_use.scr ..183
11.2.3 techvars.scr ...184
11.2.4 Using Pre-defined Technologies ...188
11.2.5 Synthesis Wire Load Models ...188

11.3 Running Synthesis ...189
11.4 Synthesis Output Files...189
11.5 Considerations ...190

11.5.1 Synthesizing Clock Trees ..190
11.5.2 Back-end and IPO Considerations ..190
11.5.3 Reordering Scan Chains ...191
11.5.4 Library Recommendations...191

11.6 Structure of the Synthesis Environment ..192

Simulation Guidelines .. 195
12.1 Verilog...195

12.1.1 Verilog Macro Definition on Simulator Command Line195
12.1.2 Verilog System Function $test$plusargs ...196
12.1.3 Verilog Simulator Specific Options ..196

12.2 RAM Models ...196
12.3 Reset ..197
12.4 Testbed Models ...197
12.5 Libraries...198
12.6 Gate Level Simulation...198

12.6.1 Back Annotation ..199

LX4x80 User Guide Revision 5.0

viii LEXRA, INC. CONFIDENTIAL

12.7 Asynchronous-mode LBC...201
12.8 Runtime Limitations..201

LEXRA, INC. CONFIDENTIAL 1

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 1

Lexra Development Environment

1.1 Overview

To assist in the development of hardware and software using Lexra processors,
the following tools are available within the RTL (register transfer language) design
database including:

• Database configuration tool

• Verilog RTL

• Verification environment

• Synthesis scripts

• Lexra Software Development Kit

• Lexra Bus Transaction Models

• Instruction Set simulator

• H/W & S/W Development Board (Altera FPGA Based)

The RTL Design Database contains all the files you need to configure, simulate,
synthesize and test your Lexra processor. Starting with a text based configuration
form known as the lconfig form, users are able to easily configure and adapt
the RTL database to accommodate their ASIC methodology as well as their
system design requirements. From reset and clock methodology to memory

Chapter

1

Lexra 6-Stage Products User’s Guide Revision 5.0

2 LEXRA, INC. CONFIDENTIAL

footprint and system bus interface, the lconfig tool reads the lconfig form
and properly adjusts the RTL database to conform to the system requirements. In
doing this, an RTL database is created that reflects your customized processor.
No hand modifications need to be made other than the editing of the lconfig
form. The lconfig tool verifies the validity of your selections, creates a
customized regression suite and generates synthesis scripts specific to your
methodology and processor configuration options.

To assist in the validation of your customized configuration, Lexra supplies a
verification environment called rundvt. Supporting industry standard simulators,
rundvt acts as an easy to use command line interface allowing you to run your
own customized software tests or the Lexra supplied regression suite on your
configured processor verilog RTL or gate level netlist.

Needed for the running of verification tests, Lexra ships with their database a
GNU based software developer’s kit called the LSDK. This collection of files
compiles, assembles and links the C and assembly files that make up part of the
testbed environment. From boot vectors, exception routines, targeted C and
assembly tests to customer written software routines, the LSDK is used in
conjunction with rundvt to process high level code so that it can be run on the
verilog RTL or gate level netlist.

Lexra provides bus transaction models that support their PCI-like system bus
called LBUS. The models can be used to help users understand the system bus
topography and to act as a task driven replacement for the entire verilog
processor in the customer’s own simulation environment.

The instruction set simulator comes in both instruction accurate and cycle
accurate version. This C-model of the processor is intended to enable software
development prior to first silicon. The ISS accurately models the pipeline and
memory subsystem of the processor, which can be interfaced with an easy to use
command line interface (CLUE) or with the Green Hill’s MULTI integrated
development environment. Fine tuning critical code loops and optimizing software
performance can efficiently be done utilizing this type of tool. The ISS also
supports a co-verification/co-simulation environment to allow ASIC design and
software teams to work together in the validation of system requirements and
functionality prior to tapeout. The ISS has additional support for the creation of
custom instructions and the use of coprocessors.

The Altera FPGA based development board is usable by both the hardware and
software teams to get a head start in the development of their system on a chip

LEXRA, INC. CONFIDENTIAL 3

Lexra 6-Stage Products User’s Guide Revision 5.0

(SOC). Able to boot third party RTOS like VxWorks, ThreadX, Nucleus and Linux,
the development board gives software teams hardware to work with prior to
tapeout improving their efficiency in creating application code. As a hardware
development platform, the development board supports a dedicated FPGA for
the sole purpose of hardware integration. This FPGA is able to communicate to
the Lexra processor held in an additional FPGA on the board. This functionality
allows hardware engineers the ability to prototype system peripherals, custom
instructions, and even coprocessors. Software debug on the development board
can be achieved through the use of an EJTAG probe.

1.2 RTL Design Database Overview

The Lexra processor is packaged in a standalone development directory. Do not
integrate this directory directly into your design environment. Instead, use it to
configure and simulate the Lexra processor as well as to generate the design
objects you will need in your design environment, specifically:

• simulation RTL

• synthesized gate level netlists

1.3 Requirements for the RTL Design Database

The RTL design database runs on Sun Solaris platform version 2.6 and higher. It
works with the following design tools:

• Synopsys VCS or Cadence Verilog-XL & NC-Verilog for verilog
simulation

• Synopsys Design Compiler for logic synthesis and optimization

• Synopsys TetraMAX ATPG for test vector generation

The design environment also requires the following UNIX environment:

• C shell (/bin/csh)

• /usr/ccs/lib/cpp (Solaris C preprocessor for vpp script)

• The LSDK tools (specifically lxgcc for compiling new tests)

• PERL 5.0xx

Lexra 6-Stage Products User’s Guide Revision 5.0

4 LEXRA, INC. CONFIDENTIAL

Check the README file referred to in Section 1.4, Installing the RTL Design
Database to see the version numbers of the tools used in testing the current
version of the Lexra processor. If you are using a tool with a version different then
the one listed in the README file, please contact a Lexra Application Engineer to
check for compatibility.

1.4 Installing the RTL Design Database

The RTL database distribution contains multiple compressed tar files that can be
found on the Lexra FTP site at ftp.lexra.com. See your local Lexra
Application Engineer for your login account information.

Once logged into the FTP server, proceed to the /releases/RTL/
<rtl_version> directory to find the files associated with the release to be
installed. Below are examples of what you might find in the <rtl_version>
directory:

Before downloading the compressed TAR files, download, open and read
both the README and the Errata file. The README file contains the most up-
to-date information regarding the release. For example:

• LSDK version requirements

• Verilog simulator version numbers used in release testing

• Design Compiler version numbers used in release testing

• UNIX decryption instructions

• Description of database and RTL changes from previous release

README Release Notes

doc* Documentation directory (Errata, datasheet, ...)

lx4189-rtl-1.10.tar.Z.crypt RTL source files (includes lconfig, rundvt,

synthesis scripts)

lx4189-ejtag-1.10.tar.Z.crypt EJTAG source files (license option)

lx4189-mac-1.10.tar.Z.crypt MAC source files (license option)

lx4189-devboard-1.10.tar.Z.crypt Development board source files

LEXRA, INC. CONFIDENTIAL 5

Lexra 6-Stage Products User’s Guide Revision 5.0

The Errata file is used to track issues regarding the various releases of the
processor design. This might include:

• Documentation discrepancies

• Synthesis issues & incompatibilities

• Configuration dependent issues & possible work-arounds

Make sure that you understand the contents of the Errata. This one document
can save you valuable time in debugging issues that may already be known.
Also, feel free to ask you Lexra Application Engineer for an up-to-date errata
showing all of the currently known issues effecting this version of the RTL.

After reading both the README and Errata file, continue the download process.
Download only the files pertaining to your license agreement since some files
may be quite large and time consuming to download. Only those who has
purchased the Lexra Development Board and plan to perform hardware
prototyping with the board need to download the devboard compressed tar file.

Once the download procedure is done, decrypt the tar files as follows:

crypt < tarfile.tar.Z.crypt > tarfile.tar.Z

When prompted, enter the crypt key (the crypt key can be obtained from your
Lexra Application Engineer)

Determine the location to install the RTL design database (<mydir>).

cd <mydir>

You must have read and write permissions to properly configure the database in
this directory. When you untar the database a top level directory will be created
with the product name of the processor (i.e. <mydir>/lx4189 - for the rest of
this document we will refer to this directory as $LX_HOME).

zcat <archive path>/tarfile.tar.Z | tar xvf -

Start with the compressed RTL file and follow with subsequent files (i.e. ejtag,
mac, ..) After untarring all of the files, lconfig must be run with either one of the

Lexra 6-Stage Products User’s Guide Revision 5.0

6 LEXRA, INC. CONFIDENTIAL

default lconfig forms or your own lconfig form to properly setup the
database. However, before running lconfig make sure that PERL is installed
properly. See Chapter 2, Using Lconfig and Section 1.5, Configuring for PERL..

1.5 Configuring for PERL

Due to it’s scripting ability, many of the Lexra supplied tools require the installation
of PERL. To check if you have PERL installed, enter the following at the UNIX
command prompt:

which perl

If PERL is not found ask your system administrator whether or not it is installed
and make the changes so that it can be found in your path. PERL can be
downloaded from the internet at www.perl.com.

Many of the Lexra provided scripts hardcode the location of PERL to /usr/
local/bin/perl. If your PERL location is different, please run the following
utility to modify the hardcoded location:

cd $LX_HOME

bin/setup_scripts

Specify the installation path you want to use. This will traverse the RTL design
database and change the hardcoded paths for PERL to point to the path you
have specified. Once PERL is successfully installed, run lconfig to verify the
setup. See Section 1.6, Running Lconfig.

1.6 Running Lconfig

Lconfig is the configuration utility that is used to properly configure the RTL
design database for a given processor configuration. If this is the first time to run
lconfig for a new installation, it is good measure to use one of the lconfig
forms provided with the release to configure and test the design database for the
first time. The provided lconfig forms can be found at $LX_HOME/user. To
run lconfig perform the following steps:

LEXRA, INC. CONFIDENTIAL 7

Lexra 6-Stage Products User’s Guide Revision 5.0

cd $LX_HOME/regression

../bin/lconfig -help

This will show the available lconfig commands. More on this will discussed in
Chapter 2, Using Lconfig.

To run lconfig with a customer specific form or with one of the provided forms,
run the following:

../bin/lconfig ../user/<myform.form>

As lconfig processes the lconfig form and configures the database, it will
print various messages on the screen. As long as no ERROR messages
occurred, the lconfig process was a success. After configuring the design
database, use rundvt to run one of the provided tests to verify database
integrity. See Chapter 10, Using the Rundvt Regression Environment.

1.7 Installing the LSDK

In order to run simulations on the RTL design database using rundvt, the Lexra
software developers kit (LSDK) must be installed. This software kit provides the
necessary tools to compile, assemble and link software tests for running on the
verilog RTL. To check what LSDK version is required for the given version of the
RTL design database, see the README file described in Section 1.4, Installing
the RTL Design Database.

To get the LSDK compressed tar file, log on to the Lexra FTP server and proceed
to the directory /releases/LSDK/<lsdk_version>. Below are examples of
what you might find in the <lsdk_version> directory:

README.txt Release notes

lsdk-i586-Linux-2.3.3.tar.bz2 Linux version of LSDK (bzip format)

lsdk-i586-Linux-2.3.3.tar.Z Linux version of LSDK

lsdk-sparc-solaris2-2.3.3.tar.bz2 Solaris version of LSDK (bzip format)

lsdk-sparc-solaris2-2.3.3.tar.Z Solaris version of LSDK

Lexra 6-Stage Products User’s Guide Revision 5.0

8 LEXRA, INC. CONFIDENTIAL

Read the contents of the README file to find out any special requirements for
this version of the LSDK. Then download the appropriate file. Decide where you
want the lsdk installed (<mydir>) and run the following command:

zcat <archive>/lsdk-platform-x.x.x.tar.Z | tar xvf -

Substitute the operating system that you are using with platform and change
x.x.x to reflect the real version number, i.e. sparc-solaris2. This will create a
directory called lsdk-platform-x.x.x. After untarring the compressed file, add the
following to your C shell .cshrc file:

setenv LSDKDIR <mydir>/lsdk-platform-x.x.x

setenv LSDKHOST sparc-solaris2

setenv MANPATH $LSDKDIR/man:$MANPATH

set path = ($LSDKDIR/$LSDKHOST/bin $path)

After adding the above to your .cshrc file, source it and verify that the setup was
correct by running the following commands:

which make

You should see that the make utility found is the one in the LSDK release
($LSDKDIR/$LSDKHOST/bin). If the make found in your path is not the one in
the LSDK installation directory, rundvt will fail when it tries to compile code.
Correct the path so that everything looks good, then go to the Section 10.1,
Rundvt Simulators to check that all tools are able to work with each other.

1.8 Running Rundvt for the First Time

For a final verification that the database is correctly installed, run the program
hello.c on the verilog RTL of the processor. As a note, hello.c is one of the c
tests that can be found in the $LX_HOME/tests directory.

cd $LX_HOME/regression

rundvt -help

LEXRA, INC. CONFIDENTIAL 9

Lexra 6-Stage Products User’s Guide Revision 5.0

This will show you all of the rundvt options available to you. See Section 10.3,
Using the Command-line Options for more information on the use of these
options.

Continue by running one of the following commands:

rundvt hello (If VCS is the default simulator)

rundvt -sim ncv hello (if NC-Verilog is the default simulator)

rundvt -sim vxl hello (if Verilog-XL is the default simulator)

If the simulation runs successfully, you will see output similar to the following
when the simulation finishes:

INFO: rundvt simv -l vrun.log

Notice: timing checks disabled with +notimingcheck at compile-time

Chronologic VCS simulator copyright 1991-2000
Contains Synopsys proprietary information.

Compiler version VCSi 5.2R9; Runtime version VCSi 5.2R9; Jun 6 18:30 2001

Starting to read tests
Hello Lexra!

49277500 M000>>> ../tests/obj/hello.00400000.bin (0 NOPS) PASSES

$finish at simulation time 49277600

V C S S i m u l a t i o n R e p o r t
Time: 492776000 ps

CPU Time: 21.210 seconds; Data structure size: 28.6Mb

Wed Jun 6 18:31:22 2001
INFO: rundvt Results of simulation

INFO: rundvt PASS: 1; FAIL: 0

INFO: rundvt Execution Complete
INFO: rundvt Total PASS 1

INFO: rundvt Total FAIL 0

If the simulation stops before the test has completed or the test runs but fails, look
at the following files found in the regression directory for help in debugging the
problem with the installation.

rundvt.log
vcompile.log

Lexra 6-Stage Products User’s Guide Revision 5.0

10 LEXRA, INC. CONFIDENTIAL

1.9 Understanding the RTL Design Database File Organization

The top level directory $LX_HOME in the distribution contains the following files:

and the following directories:

Each Verilog RTL file includes only one module. The filename for module
<module_name> is <module_name>.v.

TAG Lexra internal database version number

release_summary_xxx_x.x a list of each file and version in the release

atpg scripts and templates for ATPG

bin scripts used to build Makefiles and symbolic links, Verilog
preprocessor, and RTL configuration tool

chip Verilog RTL code for chip-level modules (for example, lx_base
used in regression tests, behavioral RAM models)

cpu Verilog RTL code for processor module and submodules

ejtag Verilog RTL code for EJTAG modules and submodules (optionally
licensed)

include Verilog include files

lbc Verilog RTL code for LBC module and submodules

lmi Verilog RTL code for LMI modules and submodules

lx Verilog RTL code for the lx0, lx1, and lx2 processor layers

macs Verilog RTL code for MAC modules and submodules (optionally
licensed, required for RISC-DSP)

regression rundvt script and associated files

syn individual subdirectories for synthesized blocks with links to source
code, generic synthesis scripts, Synopsys synthesis
constraints, and Makefile for each block

system Verilog RTL code for LX modules (includes behavioral models for
RAM, CLK & reset buffers)

testbed Verilog RTL code for associated test bench code

tests tests to be run on the Lexra processor verilog model

tlb Verilog RTL code for TLB MMU (optionally licensed)

tm_lbus Verilog RTL code for LBC bus functional models

user files that need to be modified by the user to describe the local tool
and library environment and locations (includes lconfig
form)

LEXRA, INC. CONFIDENTIAL 11

Lexra 6-Stage Products User’s Guide Revision 5.0

1.10 Customer Configurations

Once you have verified proper installation, the environment is ready to generate
design objects for the configuration and technology you have specified.
Subsequent chapters describe each step below in more detail.

• generate a configuration using lconfig Chapter 2

• use the lx0,1,2 design hierarchies Chapter 3

• interface the RAMs Chapter 4

• use a bus controller Chapter 5

• add a custom engine interface Chapter 6

• add a coprocessor Chapter 7

• use the EJTAG option Chapter 8

• add testability Chapter 9

• run regressions (RTL & gates) Chapter 10

• synthesize Chapter 11

• simulate Chapter 12

Lexra 6-Stage Products User’s Guide Revision 5.0

12 LEXRA, INC. CONFIDENTIAL

LEXRA, INC. CONFIDENTIAL 13

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 2

Using Lconfig

2.1 Overview

The lconfig utility supplied by Lexra configures the RTL design database. This
includes: RTL code, simulation environment, and synthesis scripts.

This chapter describes how to use lconfig. It does not describe specific
processor configuration options. Lconfig generates blank forms, which
document these options.

Lconfig is a PERL 5 script providing an easy to use form based method for
configuring the RTL design database. You fill out a form and process it with
lconfig to accomplish the tasks listed below. Forms include documentation that
describes all available options. The option defaults may meet your needs.

Lconfig lets you do the following:

• Configure features such as cache sizes, optional coprocessor
interfaces, custom engines, and system bus attributes

• Generate an include file that tailors the RTL code and top level
integration. Lexra's RTL code, which uses the symbol definitions to
manage its configuration-dependent features, includes this file.
Lexra's rundvt script also examines this file to determine what
simulation tests must be executed to verify the configuration.

• Create Verilog module lists for RTL simulation

• Generate makefiles to control synthesis

Chapter

2

Lexra 6-Stage Products User’s Guide Revision 5.0

14 LEXRA, INC. CONFIDENTIAL

The lconfig PERL script is located in the $LX_HOME/bin directory. To use it,
you must have PERL installed on your system. See Section 1.5, Configuring for
PERL.

2.2 When to Execute Lconfig

Lconfig creates files that tailor the simulation and synthesis environments to
your configuration. You must run lconfig at least once before performing
simulation and synthesis tasks. Because it creates files that are directly used for
these tasks, do not execute lconfig when simulation or synthesis is in
progress.

After you have settled upon a configuration and started synthesis, do not run
lconfig to change the configuration unless you are willing to resynthesize. The
makefiles generated by lconfig include dependencies that rebuild the required
modules the next time you synthesize.

2.3 Running Lconfig

The execution of lconfig should be done from the $LX_HOME/regression
directory. You will find preconfigured lconfig forms supplied by Lexra in the
$LX_HOME/user directory. The user directory is a good place to keep application
specific forms.

Lconfig has many command line options. For example: generating a blank
form, copying an old form to a new one and building clean RTL files.

A blank form is the starting point for your custom configuration of the Lexra
processor. It includes detailed documentation of all configurable features with
working default values assigned to each feature.

To get a blank configuration form, type:

cd $LX_HOME/regression

../bin/lconfig -blank_form ../user/<my.form>

where my.form is the name of the output file you wish lconfig to produce.

LEXRA, INC. CONFIDENTIAL 15

Lexra 6-Stage Products User’s Guide Revision 5.0

Lconfig does not overwrite an existing file when it creates blank forms. Instead
it reports an error.

After creating a blank form, review it and make changes from the default values to
satisfy your particular needs.

Next, process the configuration form with the command

../bin/lconfig ../user/<my.form>

where my.form is the name of your form.

When creating forms, lconfig always writes the output form in the current
working directory unless given a path to another subdirectory. When processing
forms, lconfig writes the required output files into the appropriate project
subdirectories. See Section 1.6, Running Lconfig.

New releases of the RTL design database can include configuration options not
available in prior releases. When new options are added, lconfig assigns an
appropriate default. This allows new releases of the RTL design database to
process old user forms.

Lconfig always issues a warning when assigning a default value. To avoid
these warnings add the default assignment or some other assignment to the input
form. Lconfig facilitates this by including a command that copies an old form to
a new form (-copy_form), preserving assigned values in the original form and
assigning default values to unspecified options. By doing this, you will be able to
view the documentation that comes with the new configuration option.

../bin/lconfig -copy_form ../user/<input_form_name> ../user/<output_form_name>

Always compare the input form and output form to ensure that lconfig has kept
old values and that the assignments for new options are acceptable.

2.4 Lconfig Forms

The blank forms produced by lconfig are not actually blank, they are just a
default starting point for system configuration. Lconfig specifies each
configurable feature in its own section. Here is a sample section.

Lexra 6-Stage Products User’s Guide Revision 5.0

16 LEXRA, INC. CONFIDENTIAL

///

//
// DCACHE -- data cache size

//

// configuration choices: NONE 64K_1 32K_1 16K_1 8K_1 4K_1 2K_1 1K_1
//

// "NONE" -- no data cache

// "64K_1" -- 64K byte direct mapped data cache
// "32K_1" -- 32K byte direct mapped data cache

// "16K_1" -- 16K byte direct mapped data cache

// "8K_1" -- 8K byte direct mapped data cache
// "4K_1" -- 4K byte direct mapped data cache

// "2K_1" -- 2K byte direct mapped data cache

// "1K_1" -- 1K byte direct mapped data cache
//

// The following settings are required when DCACHE = NONE:

// MEM_GRANULARITY = BYTE
//

// default: DCACHE = "2K_1";

//
///

DCACHE = "2K_1";

Comment lines begin with // characters. A blank form includes comments
describing, at a minimum, the legal settings for an option and the default value.
For more complex options, lconfig supplies additional documentation. When
lconfig processes a form, it does not interpret the comments. A default
assignment follows the comment block for a given setting. You may edit the form
to change these values.

Carefully review all of the documentation provided in a blank form to determine
the configuration settings your application requires.

Throughout the documentation supplied by lconfig, the word module means a
configurable feature. This is more general than the Verilog module keyword. For
lconfig, a module is any configurable feature that is conveniently named and
given a list of possible choices. More than one processor Verilog module may be
affected by the choice for a single lconfig setting.

LEXRA, INC. CONFIDENTIAL 17

Lexra 6-Stage Products User’s Guide Revision 5.0

2.5 Forms Supplied by Lexra

Lexra supplies several pre-configured forms in the RTL design database. These
are in the $LX_HOME/user directory. Do not use them as a starting point for
configuring your version of the processor. Generate a blank form for that purpose.
Rather, consult these files for useful regression test configurations and examples
of how to configure the Lexra processor in a full system environment. Also use
these files to verify that the initial installation of the RTL design database was
successful. Here is a list of forms you might find in this directory:

The reference configurations above highlight the minimal stand-alone chip level
simulation testbed provided with the Lexra processor, which employs a stand-
alone chip and minimal memory system model. Take the time to look through a
blank lconfig form so that you get a chance to read the documentation that
explains each available processor option.

In any of the reference configurations above, you can fully synthesize all the
design modules at or below the level of the lx1 module supplied by Lexra. See
Chapter 11, Synthesizing the Lexra CPU,. Lexra supplies modules outside of this
hierarchy for simulation purposes only.

2.6 Files Produced by Lconfig

When processing a form, lconfig creates the following files in the RTL design
database.

See more detailed descriptions of these files in the sections below.

lx4x80.form a basic LX4x80 configuration w/ no MAC, no EJTAG, in an
environment with memory models to test it

lx4x80_mac.form a basic LX4x80 configuration MAC support, no EJTAG, in an
environment with memory models to test it

lx4x80_ej.form a basic LX4x80 configuration with no MAC, EJTAG support, in an
environment with memory models to test it

include/lxr_symbols.vh include file with define symbols

chip/sram_<type>_<data type>_<depth>x<width>.v behavioral RAM models

regression/*.inpfiles list of RTL & testbed source files to include in simulation

syn/syntrol/Makefile synthesis makefile

Lexra 6-Stage Products User’s Guide Revision 5.0

18 LEXRA, INC. CONFIDENTIAL

Never directly modify the contents of any these files. To ensure consistent
simulation and synthesis with the RTL code, lconfig must produce these files.

2.6.1 lxr_symbols.vh

This file contains many defines. They control aspects of the Lexra processor RTL
configuration and simulation testbed setup. The file has the following sections:

• summary of the configuration choices

• summary of RAM requirements

• configuration independent symbols

• configuration dependent symbols

Here is an example RAM summary provided by lconfig:

// RAM requirement summary
//
// MODULE CONFIG DEPTH WIDTH PORTS RAM QTY USED FOR
// ====== ====== ===== ===== ===== === === ========
// ICACHE 1K_2 128 x 32 1 sram_ic_data0_128x32 1 data store set 0
// ICACHE 1K_2 128 x 32 1 sran_uc_data1_128x32 1 data store set 1
// ICACHE 1K_2 32 x 24 1 sram_ic_tag0_32x24 1 tag store set 0
// ICACHE 1K_2 32 x 26 1 sram_ic_tag0_32x26 1 tag store set 1
// and LOCK/LRU flags
// DCACHE 2K_1 512 x 32 1 sram_dc_data_512x32 1 data store
// DCACHE 2K_1 128 x 22 1 sram_dc_tag_128x22 1 tag store

Following the documentation section in the lxr_symbols.vh file, there are
some symbol definitions that are independent of the configuration. These are the
same for every lconfig execution.

Following these are a set of sections, one for each configurable item in the
processed form. These can be very simple, as in this example.

// SEN_BUFFERS = "NONE" -- Do Not Buffer Scan Enable

`define VPP_POP_NO_SENBUFS

Other items result in several to many symbol definitions for tailoring the RTL
code.

LEXRA, INC. CONFIDENTIAL 19

Lexra 6-Stage Products User’s Guide Revision 5.0

After all of the sections for the configurable features, there are some more pre-
determined definitions. Some of these may rely on configuration dependent
definitions in the middle section of the lxr_symbols.vh file.

2.6.2 chip/sram_<type>_<data_type>_<depth>x<width>.v

Lconfig automatically generates behavioral ram files. They are listed in the
lxr_symbols.vh file, with the specific sizes required for the chosen
configuration. Rundvt uses them for RTL simulation. Lconfig puts the models
in the chip project sub-directory, The rundvt script uses them when it starts the
RTL simulation via the file regression/lx2.inpfiles.

For synthesis, you must supply Verilog wrappers with the names of the modules
generated by lconfig and put them in the chip/<technology> directory.
You specify <technology> through the lconfig TECHNOLOGY variable. You
must supply the wrappers with the same port list as the behavioral models
generated by lconfig, but internally the wrappers instance an application-
specific RAM. To help you write wrappers, we provide an example wrapper in the
chip/custom/tsyncram_example file.

2.6.3 regression/*.inpfiles

The *.inpfiles lconfig produces contain lists of Verilog files needed for
simulation with the rundvt script. The rundvt script, which is also in the
regression directory, passes these lists to Verilog. The different inpfiles separate
the source files into groups according to basic code category. Lconfig lists only
the files required for the specific configuration. Below is a list of some of the
inpfiles created by lconfig:

You can specify additional application specific files on the rundvt command line
to make them available to the simulation.

lx0.inpfiles Files that make up the processor, local bus memory controllers,
co-processor interface, and custom engine interface. All of the
modules in this list are ultimately instanced as submodules in a
module named lx0.

1x1.inpfiles system bus interface, MAC, EJTAG, the integration layer
connecting these modules to the lx0 module

lx2.inpfiles RAM models, the integration layer connecting RAMs to the lx1
module

testbed.inpfiles Simulation testbed support: system memory transactors and bus
monitors, for example

Lexra 6-Stage Products User’s Guide Revision 5.0

20 LEXRA, INC. CONFIDENTIAL

2.6.4 syn/syntrol/Makefile

This is the main Makefile that controls the synthesis process. For every
synthesized block in the RTL design database, there is a subdirectory in the syn
directory used for synthesis. Lconfig writes a Makefile in each sub-directory,
tailored as needed to support the specific configuration. This Makefile will work
with the syn/syntrol/Makefile to perform the bottom-up synthesis of the
Lexra processor.

The syn/syntrol/Makefile contains commands to synthesize the various blocks in
the processor. It also contains hierarchical make commands to build sub-blocks.
You can synthesize the entire design by executing make from within the syn/
lx2 directory.

2.7 Diagnostic Messages

Before processing your request, lconfig validates its command line to ensure it
is properly formed. It also cross-checks information supplied in your input form
with its internal database and performs purely internal consistency checks as it
runs.

This section contains a complete listing of the diagnostic messages displayed by
lconfig:

2.7.1 Notice Messages

These are messages containing useful information.

reading <form_name>

Specifies the file being read by lconfig

writing <dir>/<filename>

Specifies the file being written by lconfig

generating behavioral RAM model <dir><model_filename>

Lconfig has created a behavioral RAM model based on configuration
requirements

LEXRA, INC. CONFIDENTIAL 21

Lexra 6-Stage Products User’s Guide Revision 5.0

generating <file>

Creating files used by Lexra software tools:

The cvtlconf utility is used to parse the lconfig.form to generate the
.asym_config file used by the ASYM version of the instruction set simulator
(ISS). If not using the ASYM ISS, ignore the WARNING that the cvtlconf
utility cannot be found.

The bin/common_symbols script is used to generate common symbol files
used by Lexra's simulation testbed, PERL scripts, and regression tests. This
ensures that all configuration dependencies needed for the regression suite are
consistently represented in the include files used by these programs.

making technology link <link>

Creating needed links for proper database setup. For example, when a vendor
specific ram model is placed into the chip/<technology> directory, a link will
be created to the syn/lx2 directory.

using technology specific file <dir>/<technology>/<filename> for synthesis

Lconfig has selected a technology specific file for synthesis in place of the
normal RTL behavioral file. Lconfig searches the directory <dir>/
<technology> to find replacements for behavioral verilog models found in the
<dir> directory.

preparing atpg related files

Lconfig modifies files related to atpg for the specific processor configuration as
specified by the lconfig form.

preparing synthesis <dir><Makefile>
calling make to generate symbol reference files in <dir>
building per-block include files in <dir>

Lconfig generates makefiles, symbol reference files and include files to be
used in the synthesis process.

lconfig finished

Lconfig has completed configuration of the RTL design database.

Lexra 6-Stage Products User’s Guide Revision 5.0

22 LEXRA, INC. CONFIDENTIAL

2.7.2 Warning Messages

These messages indicate problems you may need to correct. Lconfig still
produces useful output files, however.

no configuration value for <module>, using default: <config>

The input form did not specify a required configuration. Lconfig will use the
default value.

default values were used for <list> options

Lconfig used one or more default values

CE0=<config0> AND CE1=<config1> supported for RTL testing only

Lexra does not support the chosen CE0/CE1 configuration for synthesis. We
allow the configuration because it is useful for RTL testing.

CE0=NONE AND CE1=EXPORT requires HI/LO to be implemented in CE1

No module is declared for CE port 0, and a module you have supplied is declared
for CE port 1. Therefore, you must design your CE module to respond to the
MFHI, MFLO MTHI and MTLO instructions. See Section 6.2.1, Instancing
Custom Engines.

CE0=<config0> AND CE1=EXPORT requires HI/LO to NOT be implemented in CE1

A Lexra module responding to the MFHI, MFLO MTHI and MTLO instructions is
declared for CE port 0, and a module you have supplied is declared for CE port 1.
Therefore, you must design your CE module not to respond to the MFHI, MFLO
MTHI and MTLO instructions. See Section 6.2.1, Instancing Custom Engines.

when LBC_SYNC_MODE is SYNCHRONOUS, LBC_RBUF need not be greater than
2

The combination of LBC_SYNC_MODE set to "SYNCHRONOUS" and
LBC_RBUF set greater than 2 results in rarely used read buffer entries, wasting
chip area. Set LBC_RBUF to 2 for this case.

LBC_RBUF is set to more than twice the line size and thus will waste area

LEXRA, INC. CONFIDENTIAL 23

Lexra 6-Stage Products User’s Guide Revision 5.0

Setting LBC_RBUF to more than twice LINE_SIZE results in unused read buffer
entries, wasting chip area. Decrease the read buffer size to save area.

<ram_model> requires technology specific wrapper <dir>/<technology>/
<ram_model> for synthesis

A technology specific RAM wrapper of the specified width and depth is required
for synthesis, but was not found in the expected location

<dir>/<filename> requires technology specific version <dir>/<technology>/
<filename> for synthesis

A technology specific file is required for synthesis, but was not found in the
expected location. See the RTL code in <dir>/<filename> for the required
module function. Module functions are usually simple one-gate functions that you
must choose manually to ensure proper implementation. The missing files do not
prevent RTL only simulation, as the RTL code always provides a generic
functional equivalent in the <dir>/<filename> file.

missing technology specific files will cause synthesis problems.

Previous error messages identified one or more required technology specific files
as missing. Absence of these files will result in synthesis errors. The RTL
simulation is still valid, however, because rundvt uses generic RTL versions of
the required technology specific files for RTL simulation.

2.7.3 Error Messages

These messages indicate problems that you need to correct before lconfig can
produce useful output files.

<module> is not a configurable feature

An unknown configurable feature appears on the left side of “=” in the form.
Check the feature name.

<config> is not a valid configuration option for <module>

An unknown value appears on the right side of “=” in the form. Check the list of
legal values in the form.

Lexra 6-Stage Products User’s Guide Revision 5.0

24 LEXRA, INC. CONFIDENTIAL

more than one configuration option specified for <module>

A configurable feature appears on the left side of more than one “=” in the form.
Delete the unnecessary feature name.

<module1> = <config1> requires <module2> = <config2>

The configuration value you chose for <module1> requires a specific value for
the configuration of <module2>, but the form specifies some other value. Select
the value specified for <config2>.

<config> is less than allowed minimum <min> for <module>
<config> is greater than allowed maximum <max> for <module>

A numerical configuration value is outside the allowed range

BASE[9:0] must be zero (BASE=<value>)
TOP[3:0] must be 1111 (TOP=<value>)
BASE[31:16] and TOP[31:16] must have same value (BASE=<value1>,
TOP=<value2>)
BASE[15:4] must be less than or equal to TOP[15:4] (BASE=<value1>,
TOP=<value2>)

The address range specification for IMEM, IROM or DMEM does not conform to
configuration rules in the form. Review the rules and correct the range.

range for <module1> overlaps with range for <module2>

The address ranges for local RAMS (IMEM, IROM, DMEM) overlap in the form.
Correct the ranges so they don't overlap.

required RTL source file <filename> does not exist

A Lexra supplied source file required by the configuration is missing. This could
indicate improper installation or accidental file deletion.

2.7.4 Abort Messages

Lconfig is unable to execute the requested command.

file name required for blank form output

LEXRA, INC. CONFIDENTIAL 25

Lexra 6-Stage Products User’s Guide Revision 5.0

The -blank_form command-line option does not specify an output file name.
Specify an appropriate output file.

invalid option <-option>

The command line has an unknown -option

too many arguments

The command line has extraneous arguments

output file <formname> already exists

The -blank_form command line option specifies an output filename already in
use.

input file <formname> does not exist

The input form specified on the command line does not exist

cannot find include and regression directories

Lconfig ran from an improper location. Always run lconfig from the
regression directory

arguments required

Lconfig ran without arguments

input file name required for source form
output file name required for destination form

The -copy_form option lacks the proper command line arguments. The syntax
is

lconfig -copy_form <input_form_name> <output_form_name>

2.7.5 Internal Messages

If lconfig halts with an INTERNAL error message, it has detected an internal
inconsistency. Lexra tests lconfig with randomly generated input forms to
ensure that you do not encounter these messages. If you do see such a
message, please contact your local Lexra Application Engineer.

Lexra 6-Stage Products User’s Guide Revision 5.0

26 LEXRA, INC. CONFIDENTIAL

LEXRA, INC. CONFIDENTIAL 27

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 3

RTL Organization

3.1 Building Blocks

The Lexra processor includes the processor core as well as a number of interface
modules. Connect your surrounding logic to the processor through these
interface blocks to architect your system.

The block diagram below shows an example of the processor complex. The
major functional blocks include:

• processor core

• local memory interfaces (LMIs)

• coprocessor interface(s) (CIs)

• custom engine interface (CEI)

• Lexra bus controller (LBC)

In addition, you can specify and configure optional, product dependent, modules
that are placed in the lx1 level of the processor hierarchy (i.e. EJTAG, MAC,
TLB, LBC.) Connect the processor complex to the rest of your design through
ports associated with the various interface blocks in the RTL. Successive
chapters of this guide explain how to use these interface modules.

Chapter

3

Lexra 6-Stage Products User’s Guide Revision 5.0

28 LEXRA, INC. CONFIDENTIAL

Figure 3-1. Processor Block Diagram

3.2 Using the Lx0/Lx0c/Lx1/Lx2 Design Hierarchies

To help you integrate Lexra processors into your design, we have organized the
hierarchy into a set of module layers. The organization provides an efficient
means to incorporate the processor into an application specific design.

The block diagram above highlights the four module layers in the processor
hierarchy. The innermost layer, lx0, contains the core processor complex. You

ICACHE IMEM

Scan collar
RAM BIST MUX

EJTAG

Core

CI(1-3)

Coprocessor(1-3)

Dcache DMEM

Scan collar
RAM BIST MUX

MAC

Custom
Engine

CEI

lx2

lx1

lx0c

lx0

LMI LMI

LMI LMI

LBC

C
B
U
S

TLB

lx_base

LEXRA, INC. CONFIDENTIAL 29

Lexra 6-Stage Products User’s Guide Revision 5.0

should never need to touch it. Layers lx0c and lx1 let you select Lexra-supplied
product options. The hierarchical topmost layer lx2 lets you connect standard
SRAMs to the processor memory interfaces. Anything above the lx2 layer is
design specific.

You never need to change the RTL source file used by the lx0, lx0c, or lx1
layers. Lconfig configures and manages them. Further, if you follow the default
RAM integration methods described below (see), you won't need to edit the
lx2.v RTL source file either. See Chapter 4, Local Memory.

3.2.1 Module Definitions

The lx0 module contains the core of the processor. The register file, interrupt
logic, pipeline and decode logic all reside here.

The optional lx0c module supplies scan collar isolation of the lx0 module. This
layer is present if you set SCAN_SCL = YES or RAM_BIST_MUX = YES in your
lconfig form. It contains an instance of the lx0 module, scan isolation logic as
well as RAM test muxes. The test muxes can be used for BIST testing or as a
point of entry into the RAMs by a DMA engine.

The lx1 module has instances of lx0 (or lx0c) and optional modules we supply
in RTL form, such as the MAC and EJTAG. It also passes the RAM, LBC,
Custom Instruction and Coprocessor ports up to the next layer as needed.

The lx2 module has instances of lx1 and all RAMs required to support the
LMIs. As long as no customization of the interfaces to the RAMs is required (i.e.
custom DMA ports or third-party RAM BIST), then this layer uses standard
interconnect and RAM wrappers. It also passes the LBC, Custom Instruction and
Coprocessor ports up to the next layer as needed.

We supply a module lx_base. It instances lx2 and other testbed modules like
copstub (an example for the coprocessor interface) and ce_dvt (example
custom instructions). This level of the hierarchy may be a useful bare-bones
starting point for your design, in that it includes wire declarations and an instance
of the lx2 module. The port list of this module is designed to work with Lexra's
simulation environment and is probably not directly useful for most applications.

Lexra 6-Stage Products User’s Guide Revision 5.0

30 LEXRA, INC. CONFIDENTIAL

LEXRA, INC. CONFIDENTIAL 31

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 4

Local Memory

This chapter outlines different features and options for Lexra’s RISC & RISC-DSP
internal memory system. The main memory system (R3000 4GB memory space)
on the external Lexra bus is part of the chip architecture and is not covered here.

Lexra processor’s internal bus is based on the Harvard bus architecture. This
specifies that there is one instruction bus and one data bus. The architecture
allows Lexra to support a flexible internal memory system with many different
memory configurations. These include different memory types, namely cache
memories, RAMs and ROMs, as well as different memory sizes. In addition,
Lexra processors can support both byte writable as well as word writable RAMs.
When using word writable RAMs, byte and half-word stores will cause the
processor to perform read-modify-writes.

Using the lconfig tool and your lconfig form, you can specify the exact
configuration of your processor. Once you’ve specified the type, size and address
location of the caches, RAMs and ROM in your design, lconfig will generate
generic memory models to allow you to simulate your configured processor.

The generic memory models serve two purposes. First, rundvt can use them for
system simulation before you decide on a specific memory technology to use.
Second, when you do decide on your memory technology, you can replace the
generic simulation models with a memory wrapper that will allow you to instance
your own technology specific model.

Lexra processor’s memory architecture also supports a number of runtime
features such as flexible cache flushing options, DMA to internal memories,
cache locking and support for memory testing.

Chapter

4

Lexra 6-Stage Products User’s Guide Revision 5.0

32 LEXRA, INC. CONFIDENTIAL

The first four sections below outline how to configure the memory architecture
and how to use the different memory models, while the following four sections
discuss the runtime features of the memory architecture. The last section discuss
product specific memory topics.

4.1 Memory Architecture and Configurability

4.1.1 Available Options

Memory Sizes and Memory Types

The two tables below show possible memory configurations.

You can configure the ICACHE to be direct or two-way set associative.

The DCACHE is direct mapped.

See the product datasheet for supported memory sizes.

ICACHE IMEM IROM

no no no

no no yes

no yes no

no yes yes

yes no no

yes no yes

yes yes no

yes yes yes

DCACHE DMEM DROM

yes no no

yes yes no

yes no yes

no yes no

no no yes

no no no

LEXRA, INC. CONFIDENTIAL 33

Lexra 6-Stage Products User’s Guide Revision 5.0

Cache Line Size

You can also configure the cache line size via the lconfig form. The cache line
size is same for both the ICACHE and the DCACHE.

Changing the cache line size has an impact on system level performance and
characteristics. If you change the size, consider such things as interrupt latency
time, main memory characteristics, bus utilization and the like.

Latency of serving interrupts - The processor stalls while the memory system is
serving a cache miss and, as a result, the processor can not service an interrupt
in the period. Thus, the longer cache lines are, the longer it takes the processor to
service a cache miss. Therefore, the processor takes longer to service an
interrupt.

NOTE: If using MEM_FIRST_WORD = DESIRED, once the desired data word is received by
the processor, the processor will continue to execute. Only if another access occurs on
the data bus while the line is still being fetched, will the processor stall.

Main memory characteristics - Some memories have long setup times but once
set up, they burst data very efficiently. Such memories are better suited for long
cache lines.

Bus utilization - Long cache lines force the processor to occupy the bus for longer
times for every cache miss. This may cause longer wait times for other devices
trying to access the bus. On the other hand, memory systems transfer more data
when there are longer cache lines. Depending on such software characteristics
as locality of code and data, this may reduce the number of cache misses.

Memory Granularity

Lexra processors have two options relating to memory granularity. These are
labeled: MEM_GRANULARITY and LMI_DATA_GRANULARITY. Both of these
are configured via the lconfig form. MEM_GRANULARITY refers to the ability of
the system bus to perform word or byte accesses and
LMI_DATA_GRANULARITY refers to the local RAMs ability to perform the same
functions.

When MEM_GRANULARITY = WORD, byte and half-word store instructions
cause a read-modify-write transaction to occur on the system bus. A store half-
word instruction to byte address 0x02, for example, will cause the processor to
read the word at location 0x00, modify the upper half of the word, and write the
entire word back across the bus to address 0x00. In this manner, the processor is

Lexra 6-Stage Products User’s Guide Revision 5.0

34 LEXRA, INC. CONFIDENTIAL

ensuring that the processor’s system bus controller only performs word accesses
on the system bus.

When MEM_GRANULARITY = BYTE, both byte and half-word store instructions
will cause the system bus controller to perform byte and half-word accesses on
the system bus. Thus, a store half-word instruction to byte address 0x02, for
example, will cause the processor to issue a half-word write access on the
system bus to address 0x02. In this sort of system, bus peripherals must be
designed in a way to understand and accept byte and half-word access.

NOTE: Even if MEM_GRANULARITY=WORD, byte and half-word accesses to uncacheable
space will cause byte and half-word transactions to occur on the system bus.
Uncacheable address space (KSEG1) is commonly mapped to hardware control
registers such that unsolicited reads (from a read-modify-write) could cause problems
with hardware control.

When LMI_DATA_GRANULARITY = WORD the local SRAMs (DCACHE and
DMEM) are specified as being word accessible. In this case, byte and half-word
writes to the data memories cause a read-modify-write to occur. This is a two
cycle process.

When LMI_DATA_GRANULARITY = BYTE the local data SRAMs are specified
as being byte accessible. In this case the RAMs must have write enables for each
of the byte lanes. In this configuration, byte and half-word writes are written to the
RAMs in a single cycle.

The following table shows the possible combinations of the granularity settings

For the best performance, set both MEM_GRANULARITY and
LMI_DATA_GRANULARITY to BYTE. Otherwise, the following talks about the
trade-offs:

MEM_GRANULARITY = WORD, LMI_DATA_GRANULARITY=WORD

Byte and half-word accesses to the local data memories require two cycles to
complete (read-modify-write). Byte and half-word accesses to memory situated
on the system bus require the processor to first read the word, modify it, then
write it back. While the initial read occurs, the processor is stalled. For systems

MEM_GRANULARITY LMI_DATA_GRANULARITY

word word

byte word

byte byte

LEXRA, INC. CONFIDENTIAL 35

Lexra 6-Stage Products User’s Guide Revision 5.0

with heavy bus usage, this may significantly impact performance. Once the word
has been read and modified, the processor will continue to operate as soon as
the word to be written is accepted by the system bus.

MEM_GRANULARITY = BYTE, LMI_DATA_GRANULARITY=WORD

Byte and half-word accesses to the local data memories require two cycles to
complete (read-modify-write). Byte and half-word accesses to memory situated
on the system bus are finished by the processor as soon as the system bus can
accept the data to be written. This frees the processor to continue processing
while the system bus handles the transfer.

MEM_GRANULARITY = BYTE, LMI_DATA_GRANULARITY=BYTE

Byte and half-word accesses to the local data memories require a single cycle to
complete. Byte and half-word accesses to memory situated on the system bus
are finished by the processor as soon as the system bus accepts the data. This
frees the processor to continue processing while the system bus handles the
transfer. In a system with a need for many byte and half-word accesses, this will
be the highest performing solution.

4.1.2 IMEM and DMEM Controllers

Optional IMEM and DMEM allow efficient storage of frequently used or timing
critical code and data (code for exception handlers for example). You configure
the address ranges of the RAMs using the lconfig form. Lconfig then sets
the address range to be hardwired internal to the processor or exported to the
LX2 port list at synthesis time. These RAMs need no tag storage.

The RAM controllers work together with the cache controllers so that an address
claimed by the RAM controller does not trigger the cache controller.
Consequently, the RAM, like a scratch pad RAM, works much like an add-on
cache with fixed address range and single cycle access times.

The DMEM controller handles an address within its range as an uninitialized data
section. Thus, the only time the DMEM controller initiates a write to the DMEM is
when explicitly told to do so by the program, that is, when the processor executes
a store instruction within its configured range. Furthermore, the DMEM controller
does not examine any valid bits. Therefore a read from a DMEM address not
written to previously returns undefined data, just like any uninitialized data
section.

Lexra 6-Stage Products User’s Guide Revision 5.0

36 LEXRA, INC. CONFIDENTIAL

You can configure the address range of the IMEM and DMEM to be within all
segments, that is, within, kuseg, kseg0, kseg1 or kseg2 using the physical
addresses that these ranges define.

For more information on how the cache and RAM controllers operate, please
read the product datasheet.

4.1.3 Configuring the Memory Architecture

The exact RAMs required for a processor application depend on how you
configure optional features with Lexra's lconfig utility. Here is a sample
lconfig form entry for configuring ICACHE.

///
//

// ICACHE -- instruction cache size

//
// configuration choices: NONE 64K_2 32K_2 16K_2 8K_2 4K_2 2K_2 1K_2

// 64K_1 32K_1 16K_1 8K_1 4K_1 2K_1 1K_1

//
// "NONE" -- no instruction cache

// "64K_2" -- 64K byte 2-way set associative instruction cache

// "32K_2" -- 32K byte 2-way set associative instruction cache
// "16K_2" -- 16K byte 2-way set associative instruction cache

// "8K_2" -- 8K byte 2-way set associative instruction cache

// "4K_2" -- 4K byte 2-way set associative instruction cache

// "2K_2" -- 2K byte 2-way set associative instruction cache
// "1K_2" -- 1K byte 2-way set associative instruction cache

// "64K_1" -- 64K byte direct mapped instruction cache

// "32K_1" -- 32K byte direct mapped instruction cache
// "16K_1" -- 16K byte direct mapped instruction cache

// "8K_1" -- 8K byte direct mapped instruction cache

// "4K_1" -- 4K byte direct mapped instruction cache
// "2K_1" -- 2K byte direct mapped instruction cache

// "1K_1" -- 1K byte direct mapped instruction cache

//
// default: ICACHE = "2K_1";

//

///

ICACHE = "1K_2";

After filling out and processing a configuration form with lconfig, you may
examine the RAM documentation section in the include/lxr_symbols.vh
file created by lconfig.

LEXRA, INC. CONFIDENTIAL 37

Lexra 6-Stage Products User’s Guide Revision 5.0

Here is an example of this documentation:

// RAM requirement summary

//

// MODULE CONFIG DEPTH WIDTH PORTS RAM QTY USED FOR

// ====== ====== ===== ===== ===== === === ========

// ICACHE 1K_2 128 x 32 1 sram_ic_data_128x32 2 data store

// ICACHE 1K_2 32 x 24 1 sram_ic_tag0_32x24 1 tag store

// ICACHE 1K_2 32 x 26 1 sram_ic_tag1_32x26 1 tag store and LOCK/LRU flags

// DCACHE 2K_1 512 x 32 1 sram_dc_data_512x32 1 data store

// DCACHE 2K_1 128 x 22 1 sram_dc_tag_128x22 1 tag store

This shows that the configuration requires six RAM instances. The names of the
Verilog modules that define these RAMs have the format sram_<type>_<data
type>_<depth>x<width>. Lconfig automatically writes behavioral models for
these RAMs, and places them in the $LX_HOME/chip subdirectory of the
processor.

NOTE: If using LMI_DATA_GRANULARITY=BYTE the names for the RAM wrappers and
behavioral RAM models will include a trailing _Xwe, where X is the number of write
enable lines. For example, sram_dc_data_4096x32_4we.v.

NOTE: If using the LX8000, the RAM for the DMEM has two ports. This is to allow fast DMA of
packet data into the local RAM (DMEM). In this case, the RAM will be labeled something
like sram_2rw_dw_data_1024x64.

For synthesis, you must use application-specific RAMs that meet these
requirements. You may use larger RAMs if the required size is not available. The
synthesis wrapper for each RAM must, however, present the required depth and
width at its interface, as described in Section 4.4, Using Library Vendors' RAM
Models below.

4.2 Memory Requirements

As described in previous sections, the processor uses memories to implement
instruction and data cache storage, instruction and data tag storage, instruction
and data RAM and ROM storage. The processor can interface with very simple
memories that requires a minimum of memory functionality. Section 4.2.1, RAM
Function below outlines functional requirements. Section 4.2.2, RAM Timing
below discusses timing requirements for optimal performance.

Lexra 6-Stage Products User’s Guide Revision 5.0

38 LEXRA, INC. CONFIDENTIAL

4.2.1 RAM Function

The Lexra processor interfaces to synchronous RAMs. The only signals it
requires are address bus, write data bus, read data bus, write enable and clock.
Optional signals are read enable and chip select. Depending on the setting of
LMI_DATA_GRANULARITY the RAMs may or may not require byte access
capability (i.e. write enables for each byte lane).

The standard RAM models and wrappers include active high and low control
lines. The memory controllers drive these redundant control pins to let you
configure wrappers for synchronous RAMs without adding logic in the wrapper.

If your RAM is asynchronous, you can easily make it synchronous by creating a
wrapper that latches all of the input signals on the positive edge of the clock.

For write operations, all signals, address, write data, read enable, write enable
and chip select are clocked on at the same positive edge of the clock.

For read operations: address, write enable, read enable and chip select are
clocked into the RAM at the same positive edge of the clock. Read data is
returned in the following cycle after a combinatorial read access delay.

See also the waveform in Section 4.2.2, RAM Timing below for memory access.

See the product datasheet for a list of the RAM interface signals.

The Lexra RTL does not support CLKN but supplies it in the wrapper for cases
that need your intervention, for example if your RAM only supports negative edge
clocking.

4.2.2 RAM Timing

A RAM access takes two cycles to complete, but the RAM may start a new
access every cycle. The two cycles are the command cycle, and the data cycle.

In the command cycle, the processor supplies ADDR, WE, RE, CS and, if
applicable, DATA_IN. The RAM device register these at the rising edge of CLK.

LEXRA, INC. CONFIDENTIAL 39

Lexra 6-Stage Products User’s Guide Revision 5.0

In the data cycle, the RAM performs a read or write operation, as indicated by the
WE control it receives in the command cycle. For a read operation, read data
flows out of the RAM during the data cycle without any intervening data registers.
For a write operation, the RAM writes the RAM array. The processor does not
observe DATA_OUT during the data cycle of a write operation.

The diagram below shows a RAM read access.

To achieve timing balance with the rest of the processor design, the RAM read
data must be stable by the 45% to 65% mark in the processor cycle. For RAMs
used as instruction or data stores, the processor uses the rest of the cycle to
transfer the information from the caches to the processor core. For RAMs used
as tag stores, the processor uses the rest of the cycle for tag comparison. Read
access times longer than 45% to 65% of the processor cycle time may well
require a decrease in the processor operating frequency.

The diagram below shows a RAM write access. The processor does not use
DATA_OUT during the data cycle of a write operation.

ADDR
WE

DATA_IN
DATA_OUT
cycle

CLK

RE

CS

cmd cycle data cycle

45% 65%

ADDR
WE

DATA_IN
DATA_OUT
cycle

CLK

RE
CS

cmd cycle data cycle

Lexra 6-Stage Products User’s Guide Revision 5.0

40 LEXRA, INC. CONFIDENTIAL

4.2.3 Critical Paths Involving RAMs

In most cases, the RAM performance dictates the performance of the processor.
This section contains guidelines on memory performance.

For most silicon technologies (groups of files for modeling foundry, process and
library information), the most critical paths in the processor are the following four.

• Address to instruction RAMs: the path providing the next instruction
address from the processor to the ICACHE or IMEM. The RAM's
address register input setup time is in the critical path.

• Instruction to processor: the path providing the instruction from the
ICACHE or IMEM back to the processor. The RAM's clock to data
out latency is in the critical path.

• Address to data RAMs: the path providing the data address from the
processor to the DCACHE or DMEM. The RAM's address register
input setup time is in the critical path.

• Data to processor: the path providing the data from the DCACHE or
DMEM back to the processor. The RAM's clock to data out latency is
in the critical path.

4.3 Using Lexra's Generic RAM Models

Lconfig produces generic RAM models based on your selected memory
architecture and memory sizes. It generates all simulation models necessary
(I-cache, ICACHE tags, DMEM etc.) based on the settings in the lconfig form file.

The generated simulation models are in $LX_HOME/chip and the names of the
generated models are sram_<type>_<data type>_<depth>x<width>.v
(or with the trailing _Xwe if using byte accessible memories). These modules are
connected to the processor, thus, no intervention is necessary. The models are
instantiated in the lx2 hierarchy. For further details, see Section 3.2, Using the
Lx0/Lx0c/Lx1/Lx2 Design Hierarchies.

The generated models are intended for RTL simulation only. Do not use them for
synthesis or sign-off simulation

LEXRA, INC. CONFIDENTIAL 41

Lexra 6-Stage Products User’s Guide Revision 5.0

4.4 Using Library Vendors' RAM Models

While the Lexra generic RAM models are well suited for early architecture
exploration when your own RAM models might not even be available, you should
not use them exclusively throughout the design cycle. At some point, use your
library vendor's RAM simulation models instead.

To use vendor RAM models, write RAM wrappers with port lists that are
compatible with lconfig's corresponding generic RAM models and name the
files the same as they are named for the generic RAM models. Put the wrappers
in the chip/<technology> subdirectory and rerun lconfig. This will allow
lconfig to create links from the syn/* directories to the location of the RAM
wrappers where the synthesis scripts will look for them. Your wrapper must
provide all the required and optional signals for interfacing to the RAMs. If the
RAM doesn't use the optional signals, simply leave them unconnected inside the
wrapper.

See the chip/<technology> directory for an example RAM wrapper.

When simulating, ensure that the vendor RAM models instanced in the RAM
wrappers are accessible. You do this, typically, by adding library entries to the
user/<technology>/gate.f file. Also, in the file regression/
lx2.inpfiles, be sure that all the RAM wrappers are listed so that the proper
verilog files are read into the verilog simulation.

RTL simulation of the processor interfacing to vendor RAM models with timing
requirements might result in simulation problems (i.e. timing checks must be
disabled). See Chapter 12, Simulation Guidelines for further details.

Vendor Memory Initialization

The vendor RAMs that get connected to the ICACHE, DCACHE and IMEM
interfaces must all be initialized to a non-X value. If they are not the
uninitialized contents can cause problems in simulation. Lexra provides in their
RTL environment a debug monitor (LMON) that will look for this condition.
However, if the monitor in LMON is not being instanced, as in the case for gate
level simulation, simulation may become corrupt. If this monitor warns that the
RAM interface has gone X, usually this comes from either the RAM content being
uninitialized or a system bus read that came back X.

Lexra 6-Stage Products User’s Guide Revision 5.0

42 LEXRA, INC. CONFIDENTIAL

To remedy the situation, the local RAMs connected to these interfaces must all
be initialized to a non-X value. For the IMEM and ICACHE, it is best to initialize
the RAM contents to an invalid opcode. If the processor unexpectedly executed
one of these opcodes, a bad opcode exception trap would occur and simulation
would fail.

For the DCACHE, initializing the RAMs to random data should suffice, for this
may very well be what the real silicon will do. DMEM contents should be
initialized by an application (i.e. via store instructions) before any data is read
from it. If it is not done, X’s may enter the processor data paths and cause
simulation problems.

Uninitialized Memory Impact on Cache Controllers

The X’s in the RAMs are a problem because the caches are permitted to
return invalid instructions or data to the processor. If a miss occurs, the cache
logic sends a signal to the processor in the next cycle to nullify the effect of
having sent the wrong information. An X in the tag stores can cause the cache
controllers to not even be able to determine if a miss occurred or not.
Although the hardware contains state machines to write 0's to all tag stores
upon reset, there is no guarantee that the processor state will not be
corrupted when the tag RAMs are allowed to contain X before reset.

An X should not be in the instruction store because the processor performs a
speculative decode of the instruction that it is sent. The nullification signal
from the cache controller will make the logic do the right thing, but only if it is
at some binary value. For the logic to support an X in an invalid instruction,
the logic would have to be structured in a way to ensure that the X is gated out
before it is sensed by the decode logic. In general this is possible for RTL, but
this property is not always preserved once the design is mapped to gates by
synthesis. And either way, the structure would have a very adverse impact on
critical path timing.

An X in the data cache's data store is not wanted for a similar reason as the
instruction store. The data that is read from the data cache might be needed
to resolve a branch condition that is present in the D stage. The X in the logic
can cause an X on the branch outcome. Even though the pipeline is being
stalled, the X can still leak through the branch logic and corrupt the pipeline.
So to ensure valid simulation, initialize the ICACHE, IMEM and DCACHE
rams to values that are non-X.

LEXRA, INC. CONFIDENTIAL 43

Lexra 6-Stage Products User’s Guide Revision 5.0

4.5 Direct Memory Access to Internal RAMs

Devices on the external Lexra bus cannot snoop the internal instruction or data
bus in order to access the internal memories. Instead, the Lexra processor
provides two methods for direct access to internal memories. First, a request/
grant method has been created for an external device to get exclusive access to
the internal memories using the same memory port that the processor uses.
Second, any of the internal memories can be made with dual-ported memories so
that an external agent can view & modify the memory contents without impacting
the performance of the processor.

4.5.1 Using Request/Grant

You can use the DMA access method outlined below to DMA data or instructions
into a local memory as well as allow an external agent to force cache invalidation
upon the processor. Thus, you can use it to control data coherency in a
multiprocessor environment.

Each ICACHE and DCACHE controller as well as each RAM controller provides
a request signal that an external agent may use to signal that it wants access to
the internal RAMs. The memory controller responds to a REQ signal asserted by
the external agent by asserting a grant (GNT) signal. When the external agent
detects the asserted GNT signal, it has exclusive access rights to the memory
devices that the memory controller normally uses.

Note: Before the memory controller asserts grant, it may have to execute a transaction on the
system bus. Make sure that the system bus is not held indefinitely or the memory
controller may not assert grant.

The external agent may access the ICACHE store and tag, IMEM, DCACHE
store and tag, DMEM, or any combination of these depending on which memory
controller's REQ and GNT signals you have connected.

The processor stalls while the grant is asserted. As a result, the length of the
DMA operation may affect system characteristics like maximum interrupt
response time.

In order to give an external agent access to internal memory using this method,
you must insert a 2-1 mux into the appropriate critical path. You can insert this
mux, called the RAM BIST MUX, using the interface we describe in Section 9.3,
RAM Testing.

Lexra 6-Stage Products User’s Guide Revision 5.0

44 LEXRA, INC. CONFIDENTIAL

DMA Priority

The external DMA engine is guaranteed to get first priority (i.e. first access)
immediately after the processor comes out of reset. This enables the DMA to
write to any memory before the processor starts executing. The DMA REQuest
line must be asserted before the processor comes out of reset in order to
guarantee this behavior.

4.5.2 Using Dual Ported Memories

Dual ported memories give you the best performance when doing DMA to the
internal processor memories. For area conscious design, the area impact of a
dual ported memory may make this feature unfeasible. Also, when using dual
ported memories, care must be taken to ensure that the processor does not
process data that is currently being modified by the external agent.

4.6 Invalidating a Cache

Lexra processors provides several different methods by which you can invalidate
the caches or portion of the caches. Since different applications have different
requirements, no method is better or worse than another. The sections below
describe the different cache invalidation schemes and their limitations and the
last section summarizes them.

4.6.1 Invalidating a Cache Completely

The coprocessor 0 has a control register called CCTL, general register
address=20. Some bits in this register control the complete invalidation of the
caches, one bit for the ICACHE and one bit for the DCACHE. Thus, you can
control the instruction and data caches separately.

An assembler program, easily created, can set these bits to desired values. Once
the processor detects that cache invalidation bits have been set, the processor
stalls. The cache controller(s) invalidate(s) the ICACHE tag and/or the DCACHE
tag, depending on the CCTL setting. The processor resumes once the caches
have been invalidated.

The cache invalidation sequence takes one cycle per cache line. You can do
instruction and data cache invalidation in parallel.

LEXRA, INC. CONFIDENTIAL 45

Lexra 6-Stage Products User’s Guide Revision 5.0

4.6.2 Invalidating a Cache Line with an Aliased Approach

You can also invalidate the DCACHE with one line granularity. Use the aliased
approach to replace the cache line you want to invalidate with another cache line.

Since the DCACHE is directly mapped, you can invalidate the cache line of a
particular address by loading an address with the same 10 lower address bits (for
a 1Kbyte cache, for example). You can find such an address by adding the cache
size to the address whose cache line you want to invalidate.

A disadvantage of this method is that it displaces the cache line at the indexed
location even if it is not the target address.

4.6.3 Invalidating a Cache Line by Uncached Reference

If the address whose cache line you want to invalidate is within the kseg0
segment, you can invalidate it by making an uncached reference to the same
physical address.

Lexra's simple memory manage unit (SMMU) provides a fixed memory mapping
scheme. The processor maps the two virtual memory segments kseg0 (cached)
and kseg1 (uncached) to the same physical memory. Furthermore, even for
uncached references, the Lexra cache controller translates the uncached virtual
address to a physical address and looks up the tag memory. If the address
matches the tag, it invalidates the cache line.

Thus, if an address in kseg0 should be invalidated in the cache, it is enough to do
a load operation from the corresponding address in kseg1.

The advantage of this method compared to the previous method is that it
invalidates the line only if it is resident.

4.6.4 Invalidating a Cache by Using DMA

You can use the DMA access method described in Section 4.5, Direct Memory
Access to Internal RAMs to invalidate the caches since the Lexra processor can
grant access not only to the cache store, but also, to the cache tag. Using the
DMA, an external agent can force cache invalidation upon the processor
instruction and/or data caches.

Lexra 6-Stage Products User’s Guide Revision 5.0

46 LEXRA, INC. CONFIDENTIAL

A cache invalidation sequence looks like this:

1. The external agent asserts REQ to the appropriate cache.

2. Once granted access to the cache (by receiving an asserted
GNT), the external agent reads some position in the cache tag
memory. To ensure data coherency it determines if there is any
data in the cache whose cache line you want to invalidate.

3. If there is, the external agent invalidates the appropriate cache
line by resetting the valid bit for these lines.

4.6.5 Invalidating a Cache Using Multi-port Memories

This method requires that the cache tag memories be implemented with multi-
port memories, or more precisely, two read ports and one write port.

This cache invalidation method is very similar to the one described in the previous
section. However, having access to the second read memory port, the external
agent does not need to use the DMA request in order to examine (read) the tag
memory. It need only use the DMA channel when finding data in the cache
whose cache line needs to be invalidated.

A cache invalidation sequence looks like this:

1. The external agent reads the cache tags when needed, using
the second read port on the tag memory.

2. If it finds data in the cache that needs to be invalidated, it issues
the REQ and invalidates the appropriate cache lines when
receiving an asserted GNT.

4.6.6 Conclusion

The methods in the first three sections of 4.6 Invalidating a Cache differ from
those the last two sections in that the first set of methods requires that the
application running on the processor itself know that is has to invalidate the
cache. It initiates the commands that invalidate the entire cache or portions of the
cache. For some systems, this is not a limitation for others, it is unusable.

The last set of methods use an external agent to force cache invalidation upon
the processor. The last method is more efficient in terms of system performance
but it may require multi-port RAMs.

LEXRA, INC. CONFIDENTIAL 47

Lexra 6-Stage Products User’s Guide Revision 5.0

4.7 ICACHE Locking

If you configure the instruction cache for two-way set associativity, the Lexra
processor lets you lock instructions into the ICACHE. You can force all fetched
instructions to occupy set 1 of the ICACHE during execution of a critical code
segment. Subsequently you can lock the instructions held in set 1 so that misses
don't displace them. In this mode, the processor uses set 0 to service ICACHE
misses.

The coprocessor 0 has a control register CCTL, general register address = 20.
The CCTL[3:2] controls the ICACHE locking.

To ensure that a critical piece of code fetched by the processor be stored and
locked into set 1, modify your function with a small wrapper as follows:

Custom_function_wrapper
Assembler code to set CCTL[3:2] = 10
Custom_function(.....) ;
Assembler code to set CCTL[3:2] = 11

End custom_function_wrapper

4.8 RAM Manufacturing or BIST Testing

The Lexra processor provides a mechanism for testing RAM at manufacturing
time or using BIST machines. See Section 9.3, RAM Testing for more details.

4.9 LX4280 Memory Specifics

The LX4280 has a 64-bit instruction bus to accommodate the dual-issue pipeline.
For consistency sake, the LX4280 also has a 64-bit interface to the data caches
and DMEM. Thus all the memory interfaces/wrappers must be 64 bits. However,
the memories themselves may be 32 bits (as in the LX4189) or 64 bits. In any
case, there must be a separate WE signal (write enable) for the upper 32 bit
memory (bit 63-32) and another WE for the lower 32 bit memory (bit 31-0).

CCTL[3:2] Functionality

00 No effect, normal operation

01 No effect, normal operation

10 forces all cache misses to occupy set 1

11 replaces cache lines in set 1 and locks it

Lexra 6-Stage Products User’s Guide Revision 5.0

48 LEXRA, INC. CONFIDENTIAL

Example:

A memory configured to be "8K_1" in the lconfig form (8 Kbytes direct
mapped) will have the following depth and width:

1024x64 for LX4280
2048x32 for LX4189

4.10 LX5280 Memory Specifics

The LX5280 has a 64-bit instruction bus to accommodate the dual-issue pipeline.
It also has a 64-bit interface to the data caches and DMEM to allow 64 bit
accesses in a single cycle. Thus all the memory interfaces/wrappers must be 64
bits. However, the memories themselves may be 32 bits (as in the LX5180) or 64
bits. In any case, there must be a separate WE signal (write enable) for the upper
32 bit memory (bit 63-32) and another WE for the lower 32 bit memory (bit 31-0).

Example:

A memory configured to be "8K_1" in the lconfig form (8 Kbytes direct
mapped) will have the following depth and width:

1024x64 for LX5280
2048x32 for LX4189

4.11 LX8000 Memory Specifics

The LX8000 has a 64-bit system bus interface. To take advantage of this the
ICACHE, IMEM and DCACHE are 64 bits wide. All the memory interfaces/
wrappers for these RAMs must be 64 bits. However, the memories themselves
may be 32 bits (as in the LX4189) or 64 bits. In any case, there must be a
separate WE signal (write enable) for the upper 32 bit memory (bit 63-32) and
another WE for the lower 32 bit memory (bit 31-0).

The DMEM on the LX8000 has it’s width specified via the lconfig form option
(DMEM_WIDTH). A write enable bit is added for each 32-bit word per DMEM
address. Therefore, a 32-bit wide DMEM will require one write enable bit. A 64-bit
DMEM will require two write-enable bits and the 128-bit wide DMEM requires four
write enable bits.

NOTE: If using LMI_DATA_GRANULARITY=BYTE there will be write-enables for every byte.
Thus, if the DMEM interface is 128 bits wide there will be 16 write-enables.

LEXRA, INC. CONFIDENTIAL 49

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 5

Using the LBC Interface

The Lexra Bus Controller (LBC) is the interface between the internal instruction
and data busses of the core and the external bus, which is used to connect
peripherals such as main memory or I/O devices. The LBC implements Lexra’s
LBUS protocol, a full-featured bus protocol that supports multiple bus masters
through a request/grant arbitration.

A detailed description of the LBC and LBUS protocol, as well as the pin
description is given in the product datasheet.

The product datasheet also describes an alternative bus structure available to the
Lexra cores, the CBUS. The CBUS is an appropriate alternative when a simple
point-to-point bus protocol is desired.

5.1 Configuring the LBC with Lconfig

5.1.1 Configuring a Synchronous/Asynchronous Interface

The LBC’s bus clock can operate either synchronous or asynchronous to the
Lexra core clock, as the LBC contains built-in asynchronous handshaking logic.
This handshaking logic does, however, significantly increase the latency of bus
accesses. Therefore, the LBC should be operated in synchronous mode if bus
latency is a concern.

The LBC is configured to run either synchronous or asynchronous using the
LBC_SYNC_MODE lconfig option. Please refer to the lconfig form and the
product datasheet for the available settings.

Chapter

5

Lexra 6-Stage Products User’s Guide Revision 5.0

50 LEXRA, INC. CONFIDENTIAL

The latency for LBUS accesses depends upon several variables. For a
synchronous bus clock, the latency will depend upon the following factors:

- Wait states of target device;

- LBUS arbitration delay;

- Type of bus operation (e.g., single word read, cache line read);

-Cache line size;

- For data cache miss operations, the location of the critical word within the
retrieved cache line (the data cache controller releases the pipeline stall when the
desired word has been retrieved over the Lexra bus);

- LBUS width (32 bits or 64 bits. Refer to product datasheet for your specific
product configuration).

When an asynchronous bus clock is used, the latency will increase due to the
asynchronous handshaking logic, which adds approximately 4 cycles per word of
round trip latency. However, the actual latency will depend greatly upon the ratio
of the bus clock to the core clock.

The table below gives the latency assuming a synchronous bus clock for a 4-
word cache line read. The best case assumes the critical word is the first word
retrieved in the cache line. The worst case assumes the critical word is the last
word retrieved, which will always be true for instruction accesses, as the
instruction cache does not implement critical word return capability. Both columns
assume no wait states on the target device and that the LBC has been pre-
granted the Lexra bus through the use of a parked master arbitration scheme.

5.1.2 Configuring Cache Policies

When the LBC initiates a bus transaction for a cache line read, it puts one and
only one address on the address bus for the whole cache line transaction.
System memory controllers may respond to cache line requests in various ways.

Mode Best-case Latency
(cycles)

Worst-case latency
(cycles)

synchronous 7 12

LEXRA, INC. CONFIDENTIAL 51

Lexra 6-Stage Products User’s Guide Revision 5.0

Therefore, it is important that the LBC be properly configured to accept the words
in the cache line in the order in which they will be read by the system memory
controller. The memory controller may respond in one of the following ways;

• by transmitting the desired word (the word that actually caused the
miss) first

• by transmitting the zero word (the first word in the cache line
independent of which word actually caused the miss) first

When transmitting the second and subsequent words, the memory controller may
increment the word position within the cache line in a linear or interleaved
manner. Please refer to the product datasheet and your lconfig form for details
and the appropriate lconfig settings.

5.1.3 Configuring Read and Write Buffer Sizes

The LBC implements a write buffer to accept write requests from the processor.
Details of operation and configuration options are explained in the datasheet and
lconfig form. Customers who wish to save area may use a reduced write buffer
size at the expense of performance. Selecting a larger write buffer size may
improve performance slightly for those applications requiring a lot of writes to
memory devices at the expense of area.

The LBC also implements a read buffer. The read buffer stores data or
instructions temporarily before transmitting them to the internal instruction or data
busses. The read buffer allows the LBC to accept read data as it is provided by
the target device. If the LBC is not able to accept read data as fast as it is
provided by the target device, its read buffer may become full. The LBC will de-
assert the IRDY signal during this condition, requiring the target device to stall the
LBUS during the transaction. The optimal read buffer size is typically the
minimum amount required to avoid the deassertion of IRDY.

If an asynchronous LBC is used, the optimal read buffer size is twice the cache
line size, or eight entries assuming a 4-word cache line size. In the case of
simultaneous instruction and data cache misses, the LBC will perform successive
ICACHE and DCACHE refills. A read buffer of eight entries will allow both
requests to be serviced and posted to the read buffer without the deassertion of
IRDY during the transaction. Setting the read buffer size to a smaller value will
reduce area, but may result in the de-assertion of IRDY during a transaction,
thereby reducing overall LBUS bandwidth.

Lexra 6-Stage Products User’s Guide Revision 5.0

52 LEXRA, INC. CONFIDENTIAL

If you configure the LBC with a synchronous interface, the cache can accept the
data as fast as the LBC can read it. Therefore, there is no need for a large read
buffer. In this case, you may reduce the size of the read buffer size to two entries,
the minimum allowable.

For more information on the read buffer and the associated configuration options,
please refer to the datasheet and the lconfig form.

5.2 Lbus Device Design Rules

The LBUS can accommodate both master and target devices. Such devices
must be designed to accommodate the LBUS protocol as described in the
product datasheet. Please refer to the datasheet for detailed signalling
descriptions.

5.2.1 LBUS Arbiters

If the LBUS contains additional bus masters besides the Lexra core, or connects
multiple master cores, you must design a bus arbiter to arbitrate requests from
the various bus masters. Detailed arbitration rules are provided in the product
datasheet. Below are some guidelines on bus arbiter design:

• The choice of prioritization (fixed priority, round robin, etc.) is up to
the customer. It is the designer’s responsibility to ensure that the
prioritization scheme used will allot sufficient bus bandwidth to each
bus master.

• Only one GNT signal can be asserted at any one time.

• You can design an arbiter that pre-grants a bus master while a
previous transaction is in progress. A pre-granted master is one that
has received a GNT signal even though it has not yet requested the
bus by asserting REQ. This technique will save 2 cycles when the
next master requests the bus.

• An arbiter that pre-grants a master may take away the GNT and give
it to another master at any time without regard for the state of the
transaction in progress (within the limits of the master device's GNT
setup time, of course). If the first master has already sampled GNT,
it starts the transaction on the next cycle. The new master samples
GNT, but also sees that the bus is now being used and does not try
to drive the bus. There is no chance of two masters simultaneously
driving the bus if they both sample GNT&~FRAME&~IRDY on the

LEXRA, INC. CONFIDENTIAL 53

Lexra 6-Stage Products User’s Guide Revision 5.0

cycle before taking ownership of the bus.

• An arbiter may park a master by continuously asserting GNT, thus
giving it instant access to the Lbus if it needs it. If another device
needs the bus, the arbiter may take away GNT to the parked master
and give it to the new master. The new master still must sample
GNT&~FRAME&~IRDY to make sure the parked master has not
started a transaction.

5.3 Device Interconnections

On any bus based system, you need to connect devices such that every slave
device sees all the master devices' signals, and all the master devices see all the
slave devices' signals. In a traditional board level design, you connect them this
way with a combination of tri-state busses and pull-up busses. You typically use
the pull-up busses for handshake signals that need to be continuously sampled.
You use the tri-state busses for wide busses that can be enabled by the device
about to drive them.

In an application specific integrated circuit (ASIC), pull-up busses are not
possible. Tri-state busses are difficult because ASICs cannot tolerate an un-
driven tri-state bus and some ASIC vendors do not permit tri-states. Therefore,
you have to modify the traditional model somewhat to build a system on a chip.

There are two basic models you can use for device interconnect: tri-state and
multiplexed. The tri-state model resembles the traditional board level tri-state
model, except that the tri-state busses must be driven at all times.

The multiplexed model uses multiplexers to create point-to-point connections,
either by distributing the multiplexers such that there is one set for each input to
each master and each target; or by cascading the signals through two-to-one
muxes at each input. Alternatively, you can supply a central set of muxes to route
the bus.

For a more detailed discussion of the tri-state model, see Section 5.3.2,
Connecting the Address, Data, and Command Busses below.

There are two rules for tri-state busses in most ASIC technologies:

• You must not sample, that is, register a signal in the high impedance
state.

Lexra 6-Stage Products User’s Guide Revision 5.0

54 LEXRA, INC. CONFIDENTIAL

• You can not have two or more drivers to the same signal at the same
time. Doing so causes shorts and reliability problems.

We treat protocol signals (FRAME, IRDY, TRDY, and SEL) and busses (ADDR,
CMD, and DATA) separately.

5.3.1 Connecting the Protocol Signals Using OR Gates

The easiest way for you to route the protocol (FRAME, IRDY, SEL, TRDY)
signals is to route all possible outputs to all possible inputs and logically OR them
before presenting them to the input pin. In other words, route all masters' FRAME
and IRDY signals to all masters and all slaves and then OR them in front of each
FRAME and IRDY input pin. Likewise, route all slaves' TRDY and SEL to all
masters, and logically OR them in front of each FRAME and IRDY input pin.

This works because Lexra defines all four protocol signals to be valid at all times
and your protocol must guarantee that no two devices ever drive the same signal
at the same time. Furthermore, your protocol must guarantee that this is also true
of XOE, DOE, and COE. The routing overheard is usually low because there are
only four signals.

LEXRA, INC. CONFIDENTIAL 55

Lexra 6-Stage Products User’s Guide Revision 5.0

5.3.2 Connecting the Address, Data, and Command Busses

You need to treat the ADDR, DATA, and CMD busses differently from the
protocol signals for three reasons. One is that they are wider busses with more
signals and are therefore, more difficult to route. Unlike the protocol signals,
which are always defined to be valid, these signals have an undefined value
when not valid. Therefore, you can not logically OR them with busses from other
sources.

You can connect these busses using either multiplexers or tri-state buffers. Most
ASIC vendors require that you use multiplexers to connect the busses, as tri-
states do require special handling and can cause testability problems.

The LBC sends two sets of output enable signals to control tri-state buffers.

F
ra

m
e

Ir
d

y

F
ra

m
e

Ir
d

y

T
rd

y

S
el

F
ra

m
e

Ir
d

y

F
ra

m
e

Ir
d

y

T
rd

y

S
el F
ra

m
e

Ir
dy

F
ra

m
e

Ir
dy

T
rd

y

S
el

T
rd

y

Se
l

Fr
am

e

Ir
d

y

T
rd

y

Se
l

Fr
am

e

Ir
d

y

Target Target

Master Master Master

Lexra 6-Stage Products User’s Guide Revision 5.0

56 LEXRA, INC. CONFIDENTIAL

• COE (command output enable) controls the command and address
busses.

• DOE (data output enable) controls the data bus.

Note that there is always an inactive cycle when any of these three busses
change ownership. If you are using tri-state busses, this inactive cycle will require
special handling to avoid un-driven tri-state busses. It is considered poor design
practice to have undriven tri-state busses. Most ASIC/COT libraries that support
tri-state drivers include bus holder devices. Bus holders are two cascaded buffers
or NOT gates, of which the second is a weak driver. Both the input and the output
of the bus holder connect to a bus signal. Because of the weak driver, the bus
holder can drive the bus to the most recently driven level without risk of current
problems or shorts.

5.4 Using CBUS

The CBUS is a simplified bus protocol optimized for point-to-point operation. It
lacks several features of the LBUS as shown in the table below. However, it can
be useful in applications in which area is critical and a multiple-master bus
protocol is not needed. Also, the simpler protocol of the CBUS makes it easier to
interface to a third party or proprietary bus structure.

The table below shows some of the principal differences between the CBUS and
the LBUS. For complete information on the CBUS signalling protocol, please
refer to the product datasheet.

Feature LBUS CBUS

asynchronous interface Yes (optional) no

write buffer yes no

read buffer yes no

multi-master bus yes no

EJTAG support yes no

LEXRA, INC. CONFIDENTIAL 57

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 6

Adding Instructions Using the Custom Engine
Interface (CEI)

6.1 Introduction

The Custom Engine Interface (CEI) allows you to implement custom instructions
as extensions to the MIPS-1 ISA. The Lexra core contains two CEIs: CEI0 and
CEI1. CEI0 is reserved for the optional multiply-accumulate (MAC) module. CEI1
is available for customer defined instructions. Up to 10 custom opcodes may be
defined.

6.2 Operation

The custom engine receives 12 opcode bits: the 6-bit op field and the 6-bit subop
field. The diagram below shows the location of these two fields in the MIPS-1
R-type opcode format.

The custom engine (CE) receives the opcode in the S stage. (Refer to the
product datasheet for information on the pipeline stages.) If it decodes the opcode
as a valid instruction, it asserts the SEL signal in the E stage. The SEL signal
indicates to the processor that the custom engine has received a valid opcode,
and a reserved instruction trap should not be taken. If SEL is not asserted, the
processor will assume an invalid opcode has been executed and will generate a
reserved instruction trap.

31:26 25:6 5:0

OP SUBOP

Chapter

6

Lexra 6-Stage Products User’s Guide Revision 5.0

58 LEXRA, INC. CONFIDENTIAL

During the E stage, the custom engine receives the two operands. They are
either two 32-bit register operands or one register operand and one 16-bit
immediate operand sign extended to 32 bits. The custom engine can return the
results to the processor via the RES signal to the core in the E stage.
Alternatively, the custom engine can use temporary registers or the MIPS-1 HI /
LO registers.

The figure below shows the block diagram of a custom engine.

6.2.1 Instancing Custom Engines

There are two lconfig options controlling the instancing of custom engines:
CE0 and CE1. Please refer to the product datasheet and lconfig form for
details on the lconfig options.

Custom engine CE0 is reserved for the Lexra MAC module. The Lexra MAC
module is optional on the LX4189 and LX4280, but is required on the LX5180 and
LX5280.

Note that the Lexra MAC implements the MIPS-1 HI / LO registers. If the MAC is
not used, then CE0 must be set to CE_HL to instance the MIPS-1 HI / LO
registers, unless these registers are implemented in CE1 by the user. Please
refer to Section 6.3.4, Temporary Registers and MIPS-1 HI/LO for details.

If you want to connect a custom engine to CE1, set CE1 to "EXPORT". Setting
CE1 to "CE_DVT" instances a simulation testbed ce_dvt.v. You can use the
testbed module as a template for implementing a custom engine. The testbed
itself is valid only for simulation purposes. The template is not synthesizable.

Custom Engine
Block

CEI_RES_E

CEI_CEIAOP_E_R

CEI_CEIBOP_E_R

CEI_CEIOP_S_R Decode

Pipeline Control CEI_SEL_E_R

CEI_HALT_E_R

CEI_CEIHOLD

CEI_XCPN_M_CI

CEI_INSTM32_S_R_N

LEXRA, INC. CONFIDENTIAL 59

Lexra 6-Stage Products User’s Guide Revision 5.0

6.2.2 Interface Signals

The core exports the following interface signals to the lx2.v module when you
set CE1 to "EXPORT". CEI inputs are outputs of your custom engine, and CEI
outputs are inputs to your custom engine.

CEI inputs (outputs of your custom engine):

CE1_RES_E[31:0]. The 32-bit result of the custom engine operation. Returned to
the core in the E stage.

CE1_SEL_E_R. Indicates that the custom engine has decoded a valid user
defined opcode and that the core should not take the reserved instruction trap.
The custom engine returns the signal to the core in the E stage.

CE1_HALT_E_R. Indicates that the custom engine is executing a multiple cycle
instruction and the result of the instruction is not yet valid. Asserting this signal
causes the pipeline to stall. Refer to Section 6.3.1, Pipeline Issues and Stalls for
further explanation of stall conditions. The custom engine returns this signal to the
core in the E stage.

CEI outputs (inputs to your custom engine):

CEI_CE1OP_S_R[11:0]. The 12-bit concatenation of the OP and SUBOP fields
from the fetched instruction. Valid in the S stage.

CEI_INSTM32_S_R_N. The core asserts low if the instruction is a 32-bit MIPS-1
instruction. The core asserts high if the instruction is a 16-bit MIPS-16 instruction.
The custom engine must examine this signal to avoid aliasing custom instructions
with MIPS-16 instructions. Custom opcodes are not available in MIPS-16. Valid in
the S stage.

CEI_CE1AOP_E_R[31:0]. The 32-bit A register operand. Valid in the E stage.

CEI_CE1BOP_E_R[31:0]. The 32-bit B register operand or the 16-bit immediate
field (sign extended to 32 bits) from the instruction. Valid in the E stage.

Lexra 6-Stage Products User’s Guide Revision 5.0

60 LEXRA, INC. CONFIDENTIAL

CEI_CE1HOLD. When high, indicates a pipeline stall. During a pipeline stall, the
outputs from the interface to the custom engine are not valid and should be
ignored. The custom engine must stall its pipeline and retain the previous state of
its outputs. In some cases, the custom engine may need to hold some of its
internal state when this signal has been asserted. The core will not assert this
signal if the custom engine itself causes a pipeline stall by asserting the
CE1_HALT_E_R signal. Valid in any pipeline stage.

CE1_XCPN_M_C1. Indicates an exception has occurred. Section 6.3.2,
Exceptions and Invalidation explains the significance of exceptions to custom
engine instructions. Valid during the M stage.

CEI_CE1INVLD_M. Indicates that the current M stage instruction is invalid.
Execution of any CE instruction in the M stage should be terminated. Refer to
Section 6.3.2, Exceptions and Invalidation for details. Valid during the M stage.

CEI_CE1INVLDP_S_R. Indicates an invalid instruction in the S stage of the
pipeline. Therefore, the instruction opcode present on CEI_CE1OP_S_R is not
valid and should be ignored. Refer to Section 6.3.2, Exceptions and Invalidation
for details. Valid during the S stage.

6.2.3 Available Opcodes

The table below shows instructions available for use by the custom engine
interface in bold type. The custom engine must also decode the MIPS-1 MFHI /
MFLO / MTHI / MTLO and the MIPS-16 MFHI / MFLO if the custom engine
implements HI / LO registers.

Opcodes in addition to those listed below are not generally supported. Please
contact Lexra if your custom engine design must implement additional
instructions beyond the 10 custom opcodes allocated below.

OP[11:6] = INSTR[31:26] OP[5:0] = INSTR[5:0] Description Instruct ion format

2'h00 2'h38 NEW_ROP0 register

2'h00 2'h3a NEW_ROP2 register

2'h00 2'h3b NEW_ROP3 register

2'h00 2'h3c NEW_ROP4 register

2'h00 2'h3e NEW_ROP6 register

2'h00 2'h3f NEW_ROP7 register

LEXRA, INC. CONFIDENTIAL 61

Lexra 6-Stage Products User’s Guide Revision 5.0

Register format:

rd <= rs SUBOP rt

Immediate format:

rt <= rs OP Immediate

For register format instructions, the rs operand appears on CE1AOP and the rt
operand appears on CE1BOP. The result is stored in register rd. To make use of
internal custom engine registers (such as the MIPS-1 HI / LO registers) instead of
a 32-bit destination register, the rd field must be set to 0x00.

For immediate format instructions, the rs operand appears on CE1AOP and the
16-bit immediate field (sign extended to 32 bits) appears on CE1BOP. The result
is stored in rt. To make use of internal custom engine registers (such as the
MIPS-1 HI / LO registers) instead of a 32-bit destination register, the rt field must
be set to 0x00.

2'h18 immediate[5:0] NEW_IOP0 immediate

2'h19 immediate[5:0] NEW_IOP1 immediate

2'h1a immediate[5:0] NEW_IOP2 immediate

2'h1b immediate[5:0] NEW_IOP3 immediate

2'h00 2'h10 reserved for MFHI register

2'h00 2'h11 reserved for MTHI register

2'h00 2'h12 reserved for MFLO register

2'h00 2'h13 reserved for MTLO register

2'h2d 6'bx1_0000 MIPS-16 MFHI register

2'h2d 6'bx1_0010 MIPS-16 MFLO register

31 26 25 21 20 16 15 11 10 6 5 0

OP = 0x00 rs rt rd 0x00 SUBOP

31 26 25 21 20 16 15 0

OP rs rt IMMEDIATE

OP[11:6] = INSTR[31:26] OP[5:0] = INSTR[5:0] Description Instruct ion format

Lexra 6-Stage Products User’s Guide Revision 5.0

62 LEXRA, INC. CONFIDENTIAL

6.3 Implementation Details

6.3.1 Pipeline Issues and Stalls

There are three types of custom engine operations:

• single cycle

• multiple cycle without stalls

• multiple cycle with stalls

In single cycle operations, the custom engine decodes the instruction in the S
stage and receives the operands in the E stage. It transfers the results to the core
by the end of the E stage, and the core updates general registers in the W stage.

In multiple cycle custom engine operations without stalls, the custom engine
decodes the instruction in the S stage, and receives the operands in the E stage.
However, it does not return the result to the core in the E stage. Instead, the
custom engine stores the result in temporary registers when the operation is
completed. One example of internal temporary registers are the MIPS-1 HI / LO
registers which are described in more detail in Section 6.3.4, Temporary
Registers and MIPS-1 HI/LO.

For custom engine operations that use internal registers, the custom engine
holds its own pipeline in the M stage for as many cycles as it takes the instruction
to execute. The processor pipeline will continue to execute subsequent
instructions. When the operation is complete, the program can retrieve the data
using custom engine opcodes that read these registers. One example of these
opcodes are the MIPS-1 MFHI and MFLO instructions, explained in more detail in
Section 6.3.4, Temporary Registers and MIPS-1 HI/LO.

In some cases, the custom engine may receive an instruction to read the
temporary registers before the execution of the multiple cycle custom engine
instruction is complete. There are two approaches to solving this problem.

• Require the programmer to place the proper spacing between the
custom instruction and an instruction accessing the temporary
registers. Attempts to read the result earlier return invalid data. This
approach simplifies the hardware design at the expense of
programming complexity.

LEXRA, INC. CONFIDENTIAL 63

Lexra 6-Stage Products User’s Guide Revision 5.0

• Assert the CE1_HALT_E_R signal to the core until the results of the
custom instruction are available in the temporary registers. This
approach adds complexity to the hardware design, but avoids any
programming hazards with custom engine instructions.

If you eliminate multiple cycle operations with stalls, you eliminate the
requirement for temporary registers. If an instruction does not require a large
number of cycles to execute, you could have the custom engine assert the
CE1_HALT_E_R signal when the instruction enters the E stage and then
deassert it when the execution is complete. The custom engine would assert the
result on CE1_RES_E in the same cycle that it deasserts CE1_HALT_E_R.

This approach causes the processor pipeline to stall whenever it encounters the
multiple cycle instruction, which in turn may cause performance degradation.
Therefore, we recommend this approach only when the number of required
instruction cycles is two or fewer. However, the reduction in design complexity
that results from removing the temporary registers may make this trade-off
worthwhile.

The processor can stall the custom engine by asserting the CEI_CE1HOLD
signal. This signal indicates that an operation such as a cache miss has caused a
processor stall. The processor does not assert this signal if the custom engine
itself caused the stall (by asserting CE_HALT). This eliminates the need to check
for potential deadlock conditions. If the processor asserts CE1HOLD, the custom
engine must hold any instruction in the S or E stage. You must ignore the opcode
and operand inputs and hold the RES output in its previous state, as the
processor is not ready to access the result of the custom engine instruction.
Multiple cycle instructions that are in the first M stage must be held as well for
proper exception handling. Instructions that have already advanced past the first
M stage may continue to execute and may update internal custom engine
temporary registers when execution completes.

6.3.2 Exceptions and Invalidation

Since the custom engine is tightly coupled with the core pipeline, proper
exception handling is a requirement. There are many sources of exceptions,
including hardware interrupts and EJTAG breakpoints. Therefore, custom engine
instructions are subject to exceptions.

Exceptions are recognized when the exception victim reaches the M stage. At
that time, all subsequent instructions which are in earlier stages in the pipeline are

Lexra 6-Stage Products User’s Guide Revision 5.0

64 LEXRA, INC. CONFIDENTIAL

squashed. The exception victim and flushed instructions are re-executed when
the exception routine has completed. In order to implement precise exceptions,
the state of the custom engine must not be changed by the squashed
instructions.

The custom engine opcodes and operands are presented to the custom engine in
the S and E stages respectively. Therefore, the custom engine design must take
care to avoid state changes until the CE instruction has completed the M stage
without any exceptions. Exception handling is enabled through the use of the
CE1_XCPN_M_C1 and CEI_INVLD_M signals.

The CEI_INVLD_M is asserted whenever the instruction in the M stage must be
invalidated. If CEI_INVLD_M is asserted, the custom engine must invalidate any
instruction in the M stage. The invalidated instruction must not change any state
internal to the custom engine. The invalidation may or may not be caused by an
exception.

The CE1_XCPN_M_C1 signal is asserted when an instruction in the M stage of
the pipeline contains an exception. When CE1_XCPN_M_C1 is asserted, the
custom engine must abort any operations in the S and E stages. The aborted
instructions must not proceed to the M stage, and must not change any state
internal to the custom engine. Instructions already in the M stage may continue to
execute, unless the CEI_INVLD_M signal is also asserted.

For multiple cycle instructions, the definition of the M stage may be confusing.
The M stage is the first cycle following the E stage in which there are no pipeline
holds (as indicated by CE1_HALT_E_R or CEI_CE1HOLD). [Note: the E stage is
when the 2 operands are valid.] Subsequent cycles are not considered part of the
M stage. Custom instructions executing in these cycles may continue execution.
For example, consider an opcode CE_LONG that takes 10 cycles following its E
stage and writes to HI / LO upon completion. The instruction CE_LONG is only
subject to exceptions in the first of the 10 cycles, which is its M stage. If
CE_LONG is executing, and has progressed beyond this first cycle, it must
continue to completion, even if CEI_INVLD_M or CE1_XCPN_M_C1 are
asserted.

In some cases, the instruction in the S stage may be invalid. In such situations,
the core asserts CEI_CE1INVLDP_S_R, indicating that the S stage opcode on
CEI_CE1OP_S_R is not valid and should be ignored. Custom engine operations
already in the E or M stages may continue execution. Examples of invalid
opcodes in the S stage include pipeline bubbles inserted by certain instructions.

LEXRA, INC. CONFIDENTIAL 65

Lexra 6-Stage Products User’s Guide Revision 5.0

6.3.3 Dual Issue Considerations

Custom engine operations on the dual-issue processors (LX4280 and LX5280)
are handled in the same manner as the single-issue processors (LX4189,
LX5180, LX8000). The pipeline control signals and exception signals must be
handled in the same manner as described earlier. However, there are some
potentially confusing situations that warrant further explanation.

Custom engine opcodes are issued to pipeline B, also known as the MAC pipe. In
some cases, an instruction may be issued only to pipeline A due to a scheduling
conflict. Refer to the product datasheet for details on dual-issue scheduling
conflicts. In such cases, an invalid instruction will propagate through pipeline B,
causing assertion of the CEI_CE1INVLDP_S_R signal. Proper handling of this
signal is still the same as described earlier.

If an exception occurs, there may be two instructions in the M stage of the
processor pipeline. Depending upon the instruction ordering and the location of
the exception, one or both instructions may be flushed. If only one instruction is
flushed, the other instruction must continue to execute. The flushed instruction
may be in either pipeline A or B. Despite this complexity, the processor will assert
the proper combination of CEI_INVLD_M and CE1_XCPN_M_C1 so that the
custom engine can properly handle the exception. The definition of these signals
is the same as described in Section 6.3.2, Exceptions and Invalidation.

6.3.4 Temporary Registers and MIPS-1 HI/LO

To avoid stalls on multiple cycle custom engine instructions, temporary registers
must be used to store the results as described in Section 6.3.1, Pipeline Issues
and Stalls. There are two approaches to implementing temporary holding
registers:

• Implement registers accessed by custom engine opcodes

• Implement MIPS-1 HI and LO registers

The former approach requires at least one opcode per 32-bit register to read the
result. An additional opcode per register may be required if writing to the register
is required, either for initialization or for a context save and restore.

Lexra 6-Stage Products User’s Guide Revision 5.0

66 LEXRA, INC. CONFIDENTIAL

The MIPS-1 instruction set provides two 32-bit registers called HI and LO. These
are accessed by the MFHI, MFLO, MTHI and MTLO instructions. In some cases,
these registers may be used as temporary registers, thereby saving valuable
opcodes. Some restrictions when using HI / LO are:

• The MAC uses the MIPS-1 HI and LO registers to store the results of
the MIPS-1 multiply and divide instructions. Therefore, the use of HI
and LO is restricted to those configurations that do not implement
the MAC. This restriction prohibits the use of HI and LO on the
LX5180 and LX5280 products.

• Normally HI and LO are implemented on CE0 when CE0 is set to its
default value of CE_HL. If the custom engine implements HI and LO
registers, the value of CE0 must be set to NONE. Lconfig does not
check for any conflict in the use of HI and LO between custom
engine modules and CE0 modules.

• The custom engine must implement the four MIPS-1 opcodes for
MTHI, MTLO, MFHI and MFLO. Additionally, if the Lexra core will be
used to run MIPS-16 code, the custom engine must also implement
the two MIPS-16 opcodes for MFHI and MFLO. This is the only
situation in which a custom engine instruction will utilize MIPS-
16.

• Compilers can make use of HI and LO to implement software
multiplies and divides. Therefore, the programmer should ensure
that data from custom engine operations is retrieved from HI / LO as
quickly as possible following execution of the CE opcode.

Regardless of the approach used to implement temporary registers, the value of
these registers must not be updated until the custom engine instruction has
completed its M stage without any exceptions.

6.3.5 Timing Considerations

All outputs of the custom engine (inputs to the Lexra core) should be sourced by
registers to avoid any timing convergence problems.

Note that both the operands and the result are valid in the E stage. This restriction
means that for a single cycle instruction, time must be allotted for the register-to-
output delay for the operands, execution of the instruction, setup time for the
result and wire propagation delay. The amount of time for instruction execution in

LEXRA, INC. CONFIDENTIAL 67

Lexra 6-Stage Products User’s Guide Revision 5.0

a single cycle is very limited. The exact amount is technology dependent, but
Lexra recommends that the time allocated be no more than 20-25% of the total
cycle time. This restriction limits single cycle opcodes to simple operations only,
especially in high frequency designs.

Inputs to the custom engine (outputs of the Lexra core) are generally available
early enough that they do not need to be immediately registered. Please consult
the product datasheet for the approximate delay times on custom engine signals.

6.4 Waveforms

Waveforms for several common custom engine operations follow. Some general
notes regarding these waveforms:

• If signals are valid only during a certain pipeline stage (e.g.,
Czrd_gen_S), the pipeline stage is appended to the end of the
signal.

• The signals that start with the string “i_”, such as i_CE_stage_M and
i_CE_stage_W, are not actual interface signals, nor do they
correspond to signals internal to the Lexra core. They are used to
demonstrate the pipeline stage corresponding to the illustrated
custom engine operation. For example, i_CE_stage_M “asserts”
when the custom engine operation is in its M stage.

Lexra 6-Stage Products User’s Guide Revision 5.0

68 LEXRA, INC. CONFIDENTIAL

Figure 6-1. Single Cycle Custom Engine Operation

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A

A
A

A

A
A

LEXRA, INC. CONFIDENTIAL 69

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 6-2. Single Cycle Custom Engine Operation with HOLD.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A

A
A

A

A
A

Lexra 6-Stage Products User’s Guide Revision 5.0

70 LEXRA, INC. CONFIDENTIAL

Figure 6-3. Two-cycle Custom Engine Operation with HALT.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A

A
A

A

A
A

LEXRA, INC. CONFIDENTIAL 71

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 6-4. Two-cycle Custom Engine Operation with HALT and HOLD.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A

A
A

A

A
A

Lexra 6-Stage Products User’s Guide Revision 5.0

72 LEXRA, INC. CONFIDENTIAL

Figure 6-5. Two-cycle Custom Engine Operation with HALT and Delayed HOLD.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A

A
A

A

A
A

LEXRA, INC. CONFIDENTIAL 73

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 6-6. Multi-cycle Custom Engine Operation Using HI/LO. The MFLO returns
the result from operation A.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_M2

i_CE_stage_M3

i_CE_stage_W

i_CE_reg_LO

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A mflo

A
A
0000 A

A
A

A
A
A

Lexra 6-Stage Products User’s Guide Revision 5.0

74 LEXRA, INC. CONFIDENTIAL

Figure 6-7. Multi-cycle Custom Engine Operation with Early MFLO Induc ing HALT
Condition.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_M2

i_CE_stage_M3

i_CE_stage_W

i_CE_reg_LO

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A mflo

A
A
0000 A

A
A

A
A
A

LEXRA, INC. CONFIDENTIAL 75

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 6-8. Custom Engine Operation with S-stage Invalidate.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

INVLDP_S_R

A

Lexra 6-Stage Products User’s Guide Revision 5.0

76 LEXRA, INC. CONFIDENTIAL

Figure 6-9. Custom Engine Operation with S-stage Exception.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

XCPN_M

A

LEXRA, INC. CONFIDENTIAL 77

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 6-10. Custom Engine Operation with HOLD and S-stage Exception.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

XCPN_M

A

Lexra 6-Stage Products User’s Guide Revision 5.0

78 LEXRA, INC. CONFIDENTIAL

Figure 6-11. Custom Engine Operation with HOLD and Delayed S-stage E xception.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

XCPN_M

A

LEXRA, INC. CONFIDENTIAL 79

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 6-12. Custom Engine Operation with E-stage Exception.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

XCPN_M

A

A
A

Lexra 6-Stage Products User’s Guide Revision 5.0

80 LEXRA, INC. CONFIDENTIAL

Figure 6-13. Custom Engine Operation with M-stage Invalidate.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A

A
A

A

LEXRA, INC. CONFIDENTIAL 81

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 6-14. Custom Engine Operation with HOLD and M-stage Invalidate.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A

A
A

A

Lexra 6-Stage Products User’s Guide Revision 5.0

82 LEXRA, INC. CONFIDENTIAL

Figure 6-15. Custom Engine Operation with HOLD and Delayed M-stage Invalidate.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_W

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A

A
A

A

LEXRA, INC. CONFIDENTIAL 83

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 6-16. Multi-cycle Custom Engine Operation Suppressed by M-stage In vali-
date.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_M2

i_CE_stage_M3

i_CE_stage_W

i_CE_reg_LO

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A

A
A
0000

Lexra 6-Stage Products User’s Guide Revision 5.0

84 LEXRA, INC. CONFIDENTIAL

Figure 6-17. Multi-cycle Custom Engine Operation Continues if Invalida te Occurs
After M-stage.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_M2

i_CE_stage_M3

i_CE_stage_W

i_CE_reg_LO

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A mflo

A
A
0000 A

A
A

A
A
A

LEXRA, INC. CONFIDENTIAL 85

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 6-18. Two multiple Cycle Custom Engine Operations, with Second Oper a-
tion (B) Suppressed by M-stage Invalidate.

CLK

CE1OP_S_R[11:0]

INSTM32_S_R_C1_N

CE1_SEL_E_R

CE1AOP_E_R[31:0]

CE1BOP_E_R[31:0]

CE1_RES_E[31:0]

CE1_HALT_E_R

i_CE_stage_M

i_CE_stage_M2

i_CE_stage_M3

i_CE_stage_W

i_CE_reg_LO

CE1HOLD

INVLDP_S_R

XCPN_M

INVLD_M

A B mflo

A B
A B
0000 A

A
A

A
A
A

Lexra 6-Stage Products User’s Guide Revision 5.0

86 LEXRA, INC. CONFIDENTIAL

LEXRA, INC. CONFIDENTIAL 87

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 7

Using the Coprocessor Interface (CI)

Coprocessors can be used to implement long latency operations that are
controlled directly by the processor. An example of such an operation may be a
DMA transfer. Coprocessors are also useful to implement custom logic that must
be directly controlled by the processor. This chapter discusses some of the
design considerations when implementing a coprocessor to connect to the Lexra
core. Waveforms are included to help illustrate the protocol.

A detailed description of the coprocessor interface signals, timing information,
and pipeline considerations can be found in the product datasheet. The
appropriate lconfig option settings can be found in the product datasheet and
in the lconfig form.

7.1 Coprocessor Overview

A Lexra coprocessor can contain up to 32 processor addressable general
registers and up to 32 processor addressable control registers. Each of these
registers is up to 32 bits wide. Typically, you use the general registers for loading
and storing data on which the coprocessor operates. Write data to the
coprocessor's general registers from the core's general registers with the MTCz
instruction. Read data from the coprocessor's general registers to the core's
general registers with the MFCz instruction. Load and store the coprocessor's
general registers directly from main memory with the LWCz and SWCz
instructions.

You can load and store the coprocessor's control registers from the core's
general registers with the CTCz and CFCz instructions respectively. You can not
load or store the control registers directly from main memory.

Chapter

7

Lexra 6-Stage Products User’s Guide Revision 5.0

88 LEXRA, INC. CONFIDENTIAL

The coprocessor can also provide a condition flag to the core. The condition flag
can be a bit of a control register or a logical function of several control register
values. Test the condition flag with the BCzT and BCzF instructions. These
instructions indicate that the program should branch if the condition is true (BCzT)
or false (BCzF).

7.2 Coprocessor Design Considerations

Listed below are some of the issues to consider when designing a Lexra
coprocessor.

• All coprocessor instructions induce a pipeline bubble, which is
effectively a NOP in the pipeline. This allows the results of
coprocessor instructions to be available in the following instruction.

• A coprocessor cannot stall the processor pipeline. A coprocessor
must return valid read data in the cycle following a read request. A
coprocessor must accept write data when it is sent by the
coprocessor interface.

• If the processor asserts Cz_rhold, the coprocessor must continue to
hold valid data on its read data output. During a pipeline hold, the
coprocessor should not sample the read or write address, or data as
these signals may not necessarily be valid. The coprocessor should
sample these inputs in the cycle when Cz_rhold deasserts.

• Coprocessor read and write operations occur at different pipeline
stages of their corresponding instructions. Therefore, coprocessor
reads and writes can happen simultaneously, even to the same
register. The instruction sequence is described in the product
datasheet.

• In some instances in which a coprocessor read immediately follows
a coprocessor write operation, a forwarding path is activated in the
coprocessor interface. In this instance, the coprocessor read will
return the same exact data that was written in the earlier write
operation. In some coprocessor designs, the returned data from the
forwarding path may be different than would normally be expected
had it been returned from the coprocessor itself. For example, some
coprocessors may make the most significant 16 bits read only zero.
If 1’s are written into these bits, the coprocessor will always return 0.

LEXRA, INC. CONFIDENTIAL 89

Lexra 6-Stage Products User’s Guide Revision 5.0

If the forwarding path is activated, 1’s would be returned instead.
Please refer to the datasheet for the exact instruction sequence
which activates the forwarding path.

• Normally, the coprocessor need not be aware of exceptions in the
core. Writes occur in the W stage of the pipeline, while exceptions
occur in the M stage; therefore, writes are inhibited before they
become visible on the interface. Reads occur in S and E stages. If
the reads are non-destructive, multiple reads are acceptable. Some
coprocessors may perform destructive read operations. Precise
exception handling requires that the coprocessor state may not be
disturbed by an instruction that is subsequently flushed from the
pipeline due to an exception. Since destructive reads cause the
coprocessor to change state, the coprocessor design must take
steps to restore its state if the read operation is subsequently
squashed. The product decathlete gives details on the exception
signals visible to the coprocessor interface (Czxcpn_M and
Czinvld_M) and their proper use. Also, exceptions can occur on
any instruction due to hardware interrupts or EJTAG breakpoint
matches. Therefore, it is not possible to assume that coprocessor
instructions themselves will not generate an exception.

• Lexra provides 3 coprocessor interfaces. Of these, Lexra
recommends that coprocessor interface 2 (“COP2”) be used if only
one is needed. The COP1 instructions are used by R3000 class
cores that have floating point units (FPU’s). Lexra has reserved use
of the COP3 instructions for future products.

Lexra 6-Stage Products User’s Guide Revision 5.0

90 LEXRA, INC. CONFIDENTIAL

7.3 Coprocessor Waveforms

Waveforms for several common coprocessor operations follow. Some general
notes regarding these waveforms:

• The signals are listed as Czrd_gen, etc., where “z” is the
coprocessor number (1, 2, or 3). Waveforms and signalling are
identical for all 3 coprocessor interfaces.

• The signals Czrd_cntx and Czwr_cntx are available only with the
LX8000 and NetVortex products.

• If signals are valid only during a certain pipeline stage (e.g.,
Czrd_gen_S), the pipeline stage is appended to the end of the
signal.

• The waveforms show the signals Czrd_gen and Czwr_gen. The
protocol for Czrd_con and Czwr_con is identical.

• The signals i_Cz_stage_M and i_Cz_stage_W are not actual
interface signals, nor do they correspond to signals internal to the
Lexra core. They are used to demonstrate the pipeline stage
corresponding to the illustrated coprocessor operation. For example,
i_Cz_stage_M “asserts” when the coprocessor operation is in its M
stage.

LEXRA, INC. CONFIDENTIAL 91

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 7-1. Coprocessor Read.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czinvld_M

Czxcpn_M

A

A

A

A

A

Lexra 6-Stage Products User’s Guide Revision 5.0

92 LEXRA, INC. CONFIDENTIAL

Figure 7-2. Coprocessor Read with S-stage Hold. S-stage inputs must not be sampled
until Czrhold deasserts.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czinvld_M

Czxcpn_M

A

A

A

A

A

LEXRA, INC. CONFIDENTIAL 93

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 7-3. Coprocessor Read with E-stage Hold.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czinvld_M

Czxcpn_M

A

A

A

A

A

Lexra 6-Stage Products User’s Guide Revision 5.0

94 LEXRA, INC. CONFIDENTIAL

Figure 7-4. Coprocessor Read with M-stage Hold.

CLK

Czrd_cntx_S[2:0]

Czd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czhold

Czinvld_M

Czxcpn_M

A

A

A

A

A

LEXRA, INC. CONFIDENTIAL 95

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 7-5. Coprocessor Read with W-stage Hold.

CLK

Czd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czhold

Czinvld_M

Czxcpn_M

A

A

A

A

A

Lexra 6-Stage Products User’s Guide Revision 5.0

96 LEXRA, INC. CONFIDENTIAL

Figure 7-6. Coprocessor Read with Exception in S-stage.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czxcpn_M

Czinvld_M

A
A

LEXRA, INC. CONFIDENTIAL 97

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 7-7. Coprocessor Read with Hold and Immediate Exception in S-stage.

Note: Exception must still be honored. This figure, along with Figure 7-8, “Coprocessor
Read with Hold and Delayed Exception in S-stage.” and Figure 7-9, “Coprocessor Read
with Exception following Hold in S-stage.” , illustrate that an exception can be raised at
any time during or after a pipeline hold.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czxcpn_M

Czinvld_M

A
A

Lexra 6-Stage Products User’s Guide Revision 5.0

98 LEXRA, INC. CONFIDENTIAL

Figure 7-8. Coprocessor Read with Hold and Delayed Exception in S-stage.

This figure, along with Figure 7-7, “Coprocessor Read with Hold and Immediate Exception
in S-stage.” and Figure 7-9, “Coprocessor Read with Exception following Hold in S-stage.”
, illustrate that an exception can be raised at any time during or after a pipeline hold.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czxcpn_M

Czinvld_M

A
A

LEXRA, INC. CONFIDENTIAL 99

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 7-9. Coprocessor Read with Exception following Hold in S-stage.

This figure, along with Figure 7-7, “Coprocessor Read with Hold and Immediate Exception
in S-stage.” and Figure 7-8, “Coprocessor Read with Hold and Delayed Exception in S-
stage.” , illustrate that an exception can be raised at any time during or after a pipeline
hold.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czxcpn_M

Czinvld_M

A
A

Lexra 6-Stage Products User’s Guide Revision 5.0

100 LEXRA, INC. CONFIDENTIAL

Figure 7-10. Coprocessor Read with Exception in E-stage.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czhold

Czxcpn_M

Czinvld_M

A
A

A

LEXRA, INC. CONFIDENTIAL 101

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 7-11. Coprocessor Read with Invalidate in M-stage.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czxcpn_M

Czinvld_M

A
A

A
A

Lexra 6-Stage Products User’s Guide Revision 5.0

102 LEXRA, INC. CONFIDENTIAL

Figure 7-12. Coprocessor Read with Hold and M-stage Invalidate.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czxcpn_M

Czinvld_M

A
A

A
A

LEXRA, INC. CONFIDENTIAL 103

Lexra 6-Stage Products User’s Guide Revision 5.0

Figure 7-13. Coprocessor Read with Hold and Delayed M-stage Invalidate.

CLK

Czrd_cntx_S[2:0]

Czrd_addr_S[4:0]

Czrd_gen_S

Czrd_data_E[31:0]

i_Cz_stage_M

i_Cz_stage_W

Czrhold

Czxcpn_M

Czinvld_M

A
A

A
A

Lexra 6-Stage Products User’s Guide Revision 5.0

104 LEXRA, INC. CONFIDENTIAL

Figure 7-14. Coprocessor Write Operation.

Figure 7-15. Coprocessor Write with W-stage Hold.

CLK

Czwr_cntx_W[2:0]

Czwr_addr_W[4:0]

Czwr_gen_W

Czwr_data_W[31:0]

Czrhold

Czxcpn_M

Czinvld_M

A
A

A

CLK

Czwr_cntx_W[2:0]

Czwr_addr_W[4:0]

Czwr_gen_W

Czwr_data_W[31:0]

Czrhold

Czxcpn_M

Czinvld_M

A
A

A

LEXRA, INC. CONFIDENTIAL 105

Lexra 6-Stage Products User Guide Revision 5.0

Chapter 8

EJTAG

EJTAG is short for MIPS EJTAG Debug Solution. EJTAG provides several
hardware features that greatly facilitate debugging of embedded software code.
The debug hardware itself is hidden and does not interfere with normal operation
of the Lexra processor. Instead, the user accesses these features with an EJTAG
compatible debugger and in-circuit emulation (ICE) probe.

The host computer communicates with the EJTAG probe through either a serial
or parallel port, or an ethernet connection. The probe, in turn, communicates with
the processor’s EJTAG hardware through the included IEEE 1149.1 JTAG
interface and TAP controller. Using the TAP controller, the probe shifts data to
and from the EJTAG data and control registers where it can perform the
following:

• respond to processor requests

• redirect direct memory access (DMA) into system memory

• configure the EJTAG control logic

• enable single step mode

• configure the EJTAG breakpoint registers

• enable PC Trace

EJTAG probes are not supplied by Lexra. They are provided by third party
vendors specializing in embedded debug. Currently, Embedded Performance
Inc. (EPI) and Green Hills Software Inc. provide EJTAG debuggers and probes
that support Lexra products.

Chapter

8

Lexra 6-Stage Products User Guide Revision 5.0

106 LEXRA, INC. CONFIDENTIAL

The Lexra EJTAG implementation supports all required features of the 2.0.0
EJTAG specification. To support these features Lexra has added support for a
new debug exception and two new instructions including software debug
exception.

8.1 Architectural Overview: How It Works

8.1.1 Hierarchy and Block Diagram

The Lexra EJTAG implementation consists of the following hardware blocks:

• JTAG TAP controller

• LBC interface

• EJTAG control registers

• Breakpoint match logic

• Coprocessor 0 (COP0) support for new debug exception, new
instructions and PC Trace

All the EJTAG modules, except the COP0 registers, reside in the lx1 hierarchy.
See the block diagram below.

LEXRA, INC. CONFIDENTIAL 107

Lexra 6-Stage Products User Guide Revision 5.0

8.1.2 Pinout Requirements

EJTAG needs a minimum of five1 additional pins. These are the standard JTAG
connector pins: TDI, TDO, CLK, TMS and TRST. Refer to Lexra’s product
datasheet for the actual RTL port names.

If the PC Trace EJTAG feature is also required, four additional pins are required
for single-issue processors: DCLK and the three-bit PC status signal named
PCST. For dual-issue processors, seven additional pins are required: DCLK and
two sets of three-bit PC status. For both scenarios, the program counter value is
output serially on the TDO pin. That is, TPC[1] is muxed with TDO and outputs

1. Due to multiple ways to reset the tap controller, TRST is an optional pin.

Breakpoint
Match Logic
and LBC I/F

EJTAG
Control

TAP
To
EJTAG
Probe

PC Status & PC Trace

Handshaking/Control

LBC
LBUS Data

LBUS Address

Debug & PC
Trace

Support

CORE

Instruction Address

Instruction Data

Data Address

Data

LMI

LMI

Debug (Match) Exception

Inst. Type & PC

lx0
lx1

Lexra 6-Stage Products User Guide Revision 5.0

108 LEXRA, INC. CONFIDENTIAL

PC trace serially to the EJTAG probe for sampling. If desired, you can add more
PC trace pins (TPC) to reduce the serial shift time of the program counter.

The maximum configuration for PC trace requires 20 additional pins: one DCLK,
four 3-bit PCST outputs (12 pins) and seven TPC pins (TPC[8:2]).

For maximum flexibility, the Lexra processor provides a warm reset pin, ResetN.
Connecting this pin to the EJTAG connector lets you reset the processor and
boot from the probe. EJTAG control and match logic are not affected. This allows
the debugging of boot code. Thus, the maximum total number of EJTAG signal
pins is 26: 5 for the JTAG interface, 20 for PC trace, and 1 for warm reset.

8.1.3 Lexra JTAG TAP Controller

The EJTAG probe enables communication between the host and the Lexra
processor via the TAP controller. When you choose the EJTAG option, you must
use Lexra's TAP controller since it includes additional instructions for shifting data
in and out of the address and data registers, and EJTAG controller.

In designing, you can use Lexra's TAP controller to control internal or boundary
scan chains. You can choose to send TAP state information and the instruction
register (JTAG_IR) contents from the TAP controller to the lx2 ports where they
can be connected to your own logic. The TAP controller supports the use of up to
four instructions defined by you to control scan or test logic.

8.1.4 COP0 Support: Debug Exception, Instructions, Registers

The Lexra processor has COP0 support for the new debug exception, two new
instructions and three new EJTAG registers.

The debug exception is the highest priority exception after Reset. Any of the
following conditions can cause an exception:

• debug interrupt signal from probe via the TAP interface

• single-step

• breakpoint match

• software instruction (software debug breakpoint: SDBBP)

If EJTAG control logic indicates that a probe is connected, the debug exception

LEXRA, INC. CONFIDENTIAL 109

Lexra 6-Stage Products User Guide Revision 5.0

handler routine is at 0xFF20_0200. Since this address is in the probe's address
space, the processor downloads the exception routine from the EJTAG probe. If
no probe is connected, the exception handler is at 0xBFC0_0200 (kseg1).

When the processor receives the debug exception, it goes into debug mode.
Certain EJTAG operations such as reading and writing of probe address space
are valid only while the processor is in this mode. Also, the debug exception is
masked by the processor in this mode. The processor can take the debug
exception while the processor is servicing a standard exception thereby, letting
you debug exception handler routines.

EJTAG requires two new instructions:

• SDBBP - software debug breakpoint: Causes debug exception. Its
format is:

• DERET - debug exception return: Causes the program to return to
the instruction address stored in the DEPC register. This instruction
incurs a delay slot.

The processor also supports three new COP0 registers:

• Debug Register (COP0 register 16): A register containing control
and status information such as the cause of the debug exception,
single-step enable and EJTAG reset

• DEPC Register (COP0 register 17): The debug exception program
counter, containing the address to which the program returns after
executing the DERET instruction.

• DESAVE register (COP0 register 18): A general purpose register for
the use of the debug exception handler.

31:26 25:6 5:0

0111_00 CODE 11_1111

31:26 25:6 5:0

0111_00 0x2000 11_1111

Lexra 6-Stage Products User Guide Revision 5.0

110 LEXRA, INC. CONFIDENTIAL

8.1.5 Hardware Breakpoints

The EJTAG block contains two sets of breakpoint registers so you can set
breakpoints on the instruction and data busses internal to the processor. The
EJTAG hardware raises the debug exception when a match occurs. You can set
breakpoints on the instruction address, the data address and the data value.
Instruction and data breakpoints are checked during reads and writes. You can
set up to 15 breakpoints for each type of breakpoint.

The breakpoint registers occupy the virtual address space 0xFF3x_xxxx. You
can address them through both the EJTAG probe and the processor core.

8.1.6 Single-step Mode

Single-step mode is enabled by setting a bit in the EJTAG debug register in
COP0. In single-step mode, the hardware raises a debug exception when each
instruction completes.

8.1.7 DMA Capability

In debug mode, the processor can reach the probe through virtual memory space
0xFF2x_xxxx. Similarly, it can reach the breakpoint registers through virtual
memory space 0xFF3x_xxxx. The EJTAG control, address, and data registers
resides in the TAP controller and are accessible only through the EJTAG. These
registers are not accessible by the processor.

The EJTAG probe uses the LBC to be able to read and write system memory.
This facility allows the user to read and write devices on the system bus. The
writing and reading of local memory (i.e. DCACHE & DMEM) is done through a
process called “instruction jamming”. In this mode the EJTAG probe forces the
processor to execute loads and stores with the source or destination of the
instruction being an EJTAG register.

8.1.8 PC Trace

Lexra processors using EJTAG, if configured, can also have real-time program
counter trace (PC Trace) capability. This feature allows a trace log to be created,
showing the history of the instruction execution. This powerful feature can be
used to find difficult to capture software problems and for code profiling.

LEXRA, INC. CONFIDENTIAL 111

Lexra 6-Stage Products User Guide Revision 5.0

When PC Trace is used, the processor outputs the program counter value serially
whenever program flow changes due to a branch, jump or exception. This serial
data is then read by an EJTAG probe which supports PC Trace and displayed in
the debugger window.

The clock output, DCLK, provides synchronization of the PC Trace signals
between the processor and the EJTAG probe. You can program the DCLK output
frequency to be 1x, 0.5x, 0.33x or 0.25x the SYSCLK frequency for single-issue
processors and 1x or 0.5x the SYSCLK for dual-issue processors. The PC status
indicating whether program flow changed because of branches, jumps,
exceptions or pipeline stalls is displayed with a three-bit PCST signal. The
processor outputs one to four sets of PC status signals depending on the
lconfig option EJTAG_DCLK_N. Single-issue processors output one set of PC
status signals per SYSCLK while dual-issue processors output two sets of PC
status per SYSCLK as shown in the table below.

The 32-bit program counter value is output serially on the TDO pin. The EJTAG
hardware can also be configured to use additional TPC pins to output the
program counter 2, 4 or 8 bits at a time; thereby reducing the number of clock
cycles required to output the full PC value. The TDO signal represents the least
significant bit of the program counter (TPC[1]), while additional TPC pins
(TPC[8:2]) contain the additional bits if configured in that manner. Use the
lconfig option EJTAG_TPC_M to specify the number of pins you want to
dedicate to output the program counter.

To support multi-processor debugging with daisy-chaining TAP controllers, de-
muxing TPC[1] with TDO is necessary. See Section 8.2.2, Multi-processor
Debugging.

After program control flow changes, it can take up to 32 clock cycles to output the
new value of the program counter. Therefore, it is possible for program flow to
change while EJTAG is still shifting out the previous program counter. EJTAG

EJTAG_DCLK_N

Single-issue

DCLK/SYSCLK

Single-issue

of PCST sets

Dual-issue

DCLK/SYSCLK

Dual-issue

of PCST sets

1 1/1 1 n/a n/a

2 1/2 2 1/1 2

3 1/3 3 n/a n/a

4 1/4 4 1/2 4

Lexra 6-Stage Products User Guide Revision 5.0

112 LEXRA, INC. CONFIDENTIAL

has two operating modes that determine how the program counter trace behaves
in these situations. In real-time mode, you truncate the old program counter and
output the new program counter instead. In non-real-time mode, the processor
pipeline stalls while the old program counter output completes. In either case,
using more pins for the PC trace output reduces the likelihood of stalls or
truncations.

If you use hardware low overhead vectored interrupts, the TPC pins output a 4-bit
code with the most significant bit set to 1 to indicate which one of the eight
hardware interrupt vectors, numbered 8 through 15, has been taken when the
EXP code is output on the PCST pins. For other exceptions, the 4-bit code with
the most significant bit set to 0 has the standard value on its three least significant
bits.

If your EJTAG probe vendor does not support this Lexra specific extension to 4
bits or if you do not use hardware vectored interrupts, you may set the lconfig
option EJTAG_XV_BITS to "3" to disable the 4-bit code. In that case, only the
standard 3-bit code is used when the EXP code is output. If the 4-bit code is
disabled and a hardware vectored interrupt is taken, the NMI/Reset 3-bit code is
used.

If the configuration of the processor includes support for MIPS16, the lconfig
option EJTAG_PC_ISABIT is used to determine the number of bits to be used for
the PC Trace PC that is driven serially on the TPC line(s) when the JMP code
outputs on the PCST pins.

The EJTAG specification states that only a 31-bit PC (bits 31:1) should be output
on the TPC line(s) by systems that are capable of executing code compressed,
16-bit instructions (MIPS16 ISA mode). Systems that are not capable of
executing in MIPS16 mode use a 30-bit PC (bits 31:2). Some debug software that
uses PC Trace information from an EJTAG probe can make good use of the ISA
mode supplied as bit 0 of the PC. This parameter supports such debug software
by enabling a 32-bit PC for systems that are MIPS16 capable. For these systems,
if this parameter is set to "YES", then bit 0 is the first bit to be output on the TPC
line(s) and has the value "1" if the target of the JMP type instruction is in MIPS16
ISA mode, and has the value "0" otherwise. This usage of bit 0 is consistent with
its use in the EPC register and as the target of a JR instruction.

Note : This parameter is ignored if the processor configuration is not capable of executing MIPS16
mode instructions. In that case, a 30-bit PC (bits 31:2) is always used for output on the TPC
line(s).

LEXRA, INC. CONFIDENTIAL 113

Lexra 6-Stage Products User Guide Revision 5.0

The correspondence between these values and the actual width of the output PC
is shown in the table below.

The setting of this option is based on the probe and debugger being used. Check
with the probe vendor for information on how this feature is supported.

8.2 Designing with EJTAG

8.2.1 Single Processor Debugging

When designing a system with only one Lexra processor, follow the diagram
below for EJTAG connections. See your EJTAG probe vendor for specific EJTAG
header pin-out information.

The warm reset (ResetN) is connected to the EJTAG header to allow the
processor to boot from the probe, thus allowing software developers the ability to
debug their reset vector. Depending on the design of the SOC, there may also be
a desire to reset peripheral logic when the warm reset is asserted. If this is the
case, wire ResetN into your cold reset logic.

MIPS16 capable PC Width (bits) EJTAG_PC_ISABIT

no 30-bits (31:2) don’t care

yes 31-bits (31:1) no

yes 32-bits (31:0) yes

DCLK
TPC[8:2]

TDO/TPC[1]

TRST

PCST[11:0]

CLK

TDI

TMS

ResetN

CResetN

LX2

Peripheral

Peripheral
Power-On-Reset

{To EJTAG Probe

Lexra 6-Stage Products User Guide Revision 5.0

114 LEXRA, INC. CONFIDENTIAL

Depending on the setting of EJTAG_TPC_M and EJTAG_DCLK_N in the lconfig
form, certain bits of the TPC and PCST busses will have to be connected to the
EJTAG header. EJTAG_TPC_M controls the number of TPC pins that are used
to serially output the PC Trace information when a change in execution occurs
(i.e. jump, branch, exception). At the chip level, connect these pins according to
the table below.

The setting of EJTAG_DCLK_N specifies the number of sets of the 3-bit PCST
that are required. At the chip level, connect these signals by following the table
below.

An EJTAG probe model is provided to check these connections. See
Section 8.2.8, EJTAG Customer Probe Model

8.2.2 Multi-processor De bugging

In order to facilitate multi-processor debugging, a feature not supported by the
EJTAG 2.0.0 specification, Lexra worked with Embedded Performance Inc. (EPI)
to come up with an extended and improved EJTAG specification. Currently EPI
has the only probes that are tested and verified to support these features. Check
with your probe vendor for compliancy.

To minimize complexity and I/O resources, multi-processor debugging can be
achieved with only a single EJTAG tap interface. This is made possible by daisy
chaining the EJTAG TAP controllers for each Lexra processor. This solution
enables independent simultaneous control of each processor with the same
pinout as the single processor configuration.

EJTAG_TPC_M Pins to connect

1 TDO/TPC[1]

2 TPC[2], TDO/TPC[1]

4 TPC[4:2],TDO/TPC[1]

8 TPC[8:2],TDO/TPC[1]

EJTAG_DCLK_N Pins to connect

1 PCST[2:0]

2 PCST[5:0]

3 PCST[8:0]

4 PCST[11:0]

LEXRA, INC. CONFIDENTIAL 115

Lexra 6-Stage Products User Guide Revision 5.0

In order to allow seamless operation with external probes, Lexra’s EJTAG TAP
controller chain must have no register stages between it and the external probe.
Any multiplexing of the external pins must be set such that there is a direct
connection to and from the Lexra TAP controller chain while using EJTAG.

As shown in the figure above, the TAP controllers are daisy chained together
such that the TDO from the first processor is connected to the TDI of processor 2
and the TDO of processor 2 is connected to the TDI of processor 3 etc. The TDO
of the last processor on the chain is connected to the TDO pin of the EJTAG
probe.

The TAP control signals (CLK, TMS) should fan out from their respective top level
pins to each TAP controller. That is, they should be broadcasted to each TAP on
the chain.

The signal TRST is removed so that the chip level pin count stays the same when
TDO/TPC[1] is de-muxed. TPC[1] is added to the TPC[8:2] bus resulting in
TPC[8:1]. With the removal of TRST, the EJTAG probe must be configured to
generate a TAP reset by asserting TMS for 5 clock periods.

The demuxing of TDO/TPC[1] is done via the lconfig option,
JTAG_TRST_IS_TPC. The de-muxing is necessary to avoid confusing the TAP
chain when one of the processors is in PC Trace mode and outputting data on it’s

DCLK
TPC[8:1]

TDO

PCST[11:0]

CLK

TDI

TMS

ResetN

CResetN

processor3

Power-On-Reset

To EJTAG Probe

PeripheralPeripheral

} To All TAPS

processor4

processor2processor1

TDI TDI

TDITDI

TDO TDO

TDOTDO{

Lexra 6-Stage Products User Guide Revision 5.0

116 LEXRA, INC. CONFIDENTIAL

TPC pins. The EJTAG probe will need to be configured to accept the TPC[1]
signal via the TRST wire on it’s EJTAG cable (EPI configuration). This may
require a jumper change on the probe cabling.

As shown in the previous figure, the PC Trace signals from each processor are
muxed into a single set of PC Trace pins that connect to the EJTAG probe
header. Various ways to control the mux can be used, but it is common to map
the mux select to a register accessible by the system bus. Using the debugger
software, the EJTAG probe can DMA to the system bus to change the mux
selection from one processor to another.

Due to the single set of PC Trace pins going to the EJTAG probe, only one
processor can be running PC Trace at any given time. Before enabling PC Trace
in the debugger, be sure to switch the PC Trace mux to the correct processor.
While PC Trace is being captured by the EJTAG probe, the TAP chain can be still
be used by the other debuggers communicating to the other processors on the
TAP chain.

8.2.3 Clocking

There are two clock domains in the EJTAG circuitry, JTAG_CLOCK and
SYSCLK. The maximum frequency of JTAG_CLOCK is 40MHz. (Check with
your probe vendor). The two clocks can be asynchronous. The EJTAG design in
the processor contains the synchronizing circuitry needed to prevent metastability
and other problems involving signals crossing clock domains. The EJTAG DCLK
output is synchronized to the SYSCLK; therefore, it does not represent an
additional clock domain.

The multiple clock domains have implications for both gate-level simulations and
scan testing. Therefore, it helps to know where the clock domain crossings occur.
For gate-level simulations, you usually need to modify the SDF (standard delay
format for annotating simulation models with timing) entries of the cell instances
below to remove the setup/hold time checks. This prevents unknowns from
propagating through the simulation.

The following registers are the synchronizing flops at the boundaries of each
clock domain.

LEXRA, INC. CONFIDENTIAL 117

Lexra 6-Stage Products User Guide Revision 5.0

From JTAG_CLOCK to SYSCLK domain:

lx1/ejtag/ejtag_control/ecr_probeen/REG_D1_R
lx1/ejtag/ejtag_control/ecr_pcasid/REG_D1_R
lx1/ejtag/ejtag_control/jtagbreak/set_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/pctrace/clr_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/dma/set_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/tif/set_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/tof/clr_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/pracc/clr_toggle2edge/Toggle_D0_R

From SYSCLK to JTAG_CLOCK domain:

lx1/ejtag/ejtag_control/jtagbreak/clr_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/pctrace/set_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/dma/clr_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/tif/clr_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/tof/set_toggle2edge/Toggle_D0_R
lx1/ejtag/ejtag_control/pracc/set_toggle2edge/Toggle_D0_R

8.2.4 Using the Lexra EJTAG TAP Controller

The Lexra processor includes an IEEE 1149.1 compliant TAP controller. If you
enable EJTAG, you must use Lexra's TAP controller. If you don't implement
EJTAG, you have the option of using Lexra's TAP controller.

To enable the TAP controller, set the lconfig parameter JTAG = EXPORT. The
TAP controller is instantiated as tap in the lx1 module. The five JTAG pins (TDI,
TDO, TCLK, TRST, and TMS) appear as ports to the lx2 module. If you enable
EJTAG, you can use the TAP controller to shift data in and out of the appropriate
EJTAG control and data registers.

The TAP controller implements the SAMPLE, BYPASS and IDCODE
instructions. You may want to use the TAP controller to implement other functions
like boundary scan control, internal scan control and EXTEST. To make this
possible, you can output key signals from the TAP controller state machine to the
lx2 module boundary by setting the lconfig parameter JTAG =
EXPORT_EXTENDED. When you choose this option, lconfig brings the pins
defined in the table below to the lx2 boundary.

Decode the TAP instructions on the JTAG_IR bus as follows. When you select
JTAG=EJTAG_EXTENDED it is up to you to implement the italicized instructions.
New instructions can be defined using one of the four user defined opcodes
reserved for this purpose.

Lexra 6-Stage Products User Guide Revision 5.0

118 LEXRA, INC. CONFIDENTIAL

8.2.5 Reset Issues

Using EJTAG, you have several ways of resetting the processor, the JTAG TAP
controller and the EJTAG control logic:

• cold reset using CResetN

• warm reset using ResetN

• TAP reset using TRST

• software reset of core

• software reset of TAP

EXTEST 5'h00

IDCODE 5'h01

SAMPLE 5'h02

EJTAG_IMPLEMENTATION 5'h03

INTEST 5'h04

HIZ 5'h05

CLAMP 5'h06

BYPASS1 5'h07

EJTAG_ADDRESS 5'h08

EJTAG_DATA 5'h09

EJTAG_CONTROL 5'h0a

EJTAG_ALL 5'h0b

EJTAG_PCTRACE 5'h10

user defined instruction 0 5'h18

user defined instruction 0 5'h19

user defined instruction 0 5'h1a

user defined instruction 0 5'h1b

BYPASS 5'h1f

LEXRA, INC. CONFIDENTIAL 119

Lexra 6-Stage Products User Guide Revision 5.0

8.2.5.1 Cold Reset

The CResetN pin asserts cold reset or power-on reset. When you assert this pin
low, the hardware resets the processor, TAP controller and the EJTAG control
logic including the breakpoint match logic. The processor begins to fetch
instructions from logical address 0xBFC0_0000 after you deassert CResetN.

Since CResetN resets the breakpoint control logic, you can't use CResetN alone
to debug boot code using EJTAG. For example, it will not be possible to set
breakpoints or single-step through the boot code. You must use the warm reset
for that purpose.

8.2.5.2 Warm Reset

The warm reset, ResetN, resets the processor core along with the LMI, LBC,
coprocessors and custom engines. The only EJTAG registers not affected are
the probe_enable and the processor_reset bits. Connect ResetN to the EJTAG
probe.

For example, by using the warm reset function EJTAG can gain immediate contol
of the processor after reset. This is done by the EJTAG probe asserting the
probe_enable bit and then issuing a warm reset. The EJTAG control logic
indicates to the processor that the EJTAG probe is present and thus changing the
reset vector to 0xFF20_0000, instead of the normal 0xBFC0_0000. The
processor will then download real boot code through the EJTAG probe.

8.2.5.3 Software Reset

There is a software reset of the core that behaves like the warm reset. Enable it
by setting bit 16 of the EJTAG control register to 1 and then set it to 0 to deassert
reset.

You can also reset the TAP controller and the EJTAG control logic without
resetting either the processor or the breakpoint logic. The three ways to do it are:

• assert TRST signal (unless configured for multiprocessor debug)

• set JTAG_TMS signal to 1 for a minimum of five JTAG_CLOCK
cycles

• set bit 7 of the COP0 debug register to 1

Lexra 6-Stage Products User Guide Revision 5.0

120 LEXRA, INC. CONFIDENTIAL

Depending on you how you configure the connection of the EJTAG probe to the
lexra TAP controller and whether the implementation supports multiple
processors on a single TAP chain, various settings in the debugger and probe will
need to be specified. These settings define the correct method for the probe to
use to reset the processor and accompanying EJTAG and TAP controller.

8.2.6 Gate Count per Breakpoint

The number of gates required per breakpoint varies depending on the type of
breakpoint you select. Instruction breakpoints only analyze an address match and
are the least costly in terms of area. Data bus breakpoints are the most costly as
they have both address and data matching.

Instruction breakpoints are the most useful. If you set a breakpoint at an
instruction address, the breakpoint exception occurs before the instruction
completes.

You can set data breakpoints on matching either address or data. The processor
checks for breakpoint matches during either cached or uncached data fetches.
Data breakpoints are useful for analyzing load/store operations. The processor
takes the breakpoint exception after the subsequent instruction completes.

Instruction breakpoints require approximately 1K gates per breakpoint. Data bus
breakpoints on the other hand require approximately 2K gates per breakpoint.

8.2.7 Memory Addressing

We reserve portions of the MIPS address space for the EJTAG probe and debug
registers. The EJTAG probe addresses, including the debug exception handler,
occupy the address space from 0xFF20_0000 through 0xFF2F_FFFF. The
debug control and breakpoint registers occupy the address space from
0xFF30_0000 through 0xFF3F_FFFF. When the processor is in debug mode,
these memory locations are mapped to the EJTAG probe space and the EJTAG
debug control and breakpoint registers, respectively. Access to these registers is
valid only when the processor is in debug mode.

When the processor is not in debug mode, these memory locations default to
uncached system memory in kseg2. Therefore, do not use these memory
locations for system devices.

LEXRA, INC. CONFIDENTIAL 121

Lexra 6-Stage Products User Guide Revision 5.0

8.2.8 EJTAG Customer Probe Model

To help customers validate the EJTAG connections between the processor(s)
and the chip level pins, Lexra provides an EJTAG Probe model & testbench. This
model and testbench used with the chip level netlist verify the connectivity of all
PC Trace and TAP signals including daisy-chained TAP controllers. See the
$LX_HOME/testbed/README.probecust file that comes with the probe
model for detailed information on how to use it.

8.3 Implementation Issues

8.3.1 Special Requirements

The PC Trace signals, PCST and TPC, can only change within a +/- 2ns window
from the rising edge of the DCLK signal. Check with the EJTAG probe
manufacturer for any changes to this specification.

Because of this tight timing requirement, you need to pay special attention to the
timing relationship between DCLK, PCST and TPC (including TDO). Depending
on the configuration, synthesis constraints and target ASIC library, you may need
to modify the synthesized netlist in order to meet this timing requirement.

This timing requirement is only necessary if DCLK is running at its maximum
frequency of 100MHz. The PC Trace probe samples PCST and TPC/TDO on the
falling edge of DCLK, so this timing specifications gives the probe 3 ns of setup
and 3ns of hold time on these signals relative to DCLK. Therefore, this timing
requirement can be relaxed if DCLK is running slower than 100MHz.

8.3.2 Unimplemented Features from EJTAG Specification

Lexra’s EJTAG implementation supports the required features of Revision 2.0.0
of the EJTAG specification. It does not implement the following optional features:

• complex break

• processor break

• data break enhancements

• EJTAG memory map in normal mode

Lexra 6-Stage Products User Guide Revision 5.0

122 LEXRA, INC. CONFIDENTIAL

• memory overlay

• DMA operation ABORT request

• indication of debug mode by hardware signal

• support for address space identifier (ASID) in break or PC trace

8.3.3 Implemented Optional Features from EJTAG Specification

The processor implements the following optional feature from Revision 2.0.0 of
the EJTAG specification:

• debug exception vector in normal memory

• profiling by DMA read of PC/ASID

LEXRA, INC. CONFIDENTIAL 123

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 9

Testability

The Lexra cores are designed for testability and complies with DFT (design for
testability) rules. In addition, the Lexra core includes various options to synthesize
test structures in the design automatically.

You can configure three test structures:

• internal scan

• a memory scan collar

• RAM test access interface

The internal scan is based on a full scan, muxed flip-flop scan architecture. If
selected, scan insertion runs automatically during Lexra synthesis. The scan
architecture includes special features to allow easy integration into your ASIC.

An optional memory scan collar provides additional observability and
controllability of the Lexra core logic in the shadow of the instruction and data
cache RAMs. It allows a combinational ATPG engine to achieve high fault
coverage with black boxed memories (not provided by Lexra).

The RAM test access interface, also called the RAM BIST interface, allows
external logic such as a BIST engine to directly access the pins on the RAMs,
thereby simplifying the testing of cache tag and store RAMs.

You configure testability just as you do all other options, using the lconfig form.

Chapter

9

Lexra 6-Stage Products User’s Guide Revision 5.0

124 LEXRA, INC. CONFIDENTIAL

9.1 Internal Scan

9.1.1 Scan Methodology Overview

The Lexra core includes scripts for scan insertion and ATPG. Scan is inserted
using Design-Compiler XP from Synopsys during normal logic synthesis.
During scan insertion, all the scannable flip-flops are replaced with their scan
equivalent assuming a muxed flip-flop architecture. LSSD architectures are not
supported by the Lexra provided scripts.

There are 3 possible approaches to scan and ATPG with the Lexra core:

• Scan insertion and ATPG performed at the Lexra core level. Using
this approach, scan insertion is done during the logic synthesis of
Lexra core. The lconfig options for scan insertion are described in
this chapter, while logic synthesis is described in detail in Chapter 11
Synthesizing the Lexra CPU. Lexra’s provided ATPG scripts can be
used to perform ATPG at the Lexra core level. This approach is
recommended for most customers, especially when multiple Lexra
cores are instantiated in the design.

• Scan insertion done at the Lexra core level, with ATPG done at the
whole chip level. Using this approach, scan insertion is done during
the logic synthesis of the Lexra processor. The lconfig options for
scan insertion are described in this chapter, while logic synthesis is
described in detail in Chapter 11 Synthesizing the Lexra CPU. This
approach can simplify the overall design flow by reducing the
number of steps in the ATPG process. The customer must still
ensure that they maintain complete controllability on the clock and
reset pins on the Lexra core. The full list of signals is shown in
Section 9.1.4, Internal Scan Interface. Please note that it is not
possible to use Lexra’s ATPG scripts when performing ATPG
at the chip level. Also, note that if many Lexra cores are
instantiated, performing ATPG at the chip level may exceed the
capacity of the ATPG EDA tools

• Whole chip scan insertion and ATPG using customer provided scan
insertion methodology and scripts. Using this approach, the Lexra
core is synthesized with scan insertion disabled. Scan insertion and
ATPG are performed at a higher level of the customer’s design
database. This approach can simplify the overall design flow by

LEXRA, INC. CONFIDENTIAL 125

Lexra 6-Stage Products User’s Guide Revision 5.0

reducing the number of steps in the scan insertion and ATPG
processes. The customer must still ensure that they maintain
complete controllability on the clock and reset pins on the Lexra
core. The full list of signals is shown in Section 9.1.4, Internal Scan
Interface. Please note that it is not possible to use Lexra’s scan
insertion or ATPG scripts when performing scan insertion at
the chip level. Also, note that if many Lexra cores are instantiated,
performing scan insertion or ATPG at the chip level may exceed the
capacity of the scan test and ATPG EDA tools.

When performing scan insertion at the Lexra core level, the user can specify the
number of scan chains and the crossing of clock domains using lconfig.

When using the Lexra provided ATPG scripts, the user can specify the degree of
controllability and observability on the I/O signals of the Lexra core. There are two
options available to the user:

• A worst-case assumption in which only the scan in, scan enable,
clock, reset, and test signals are controllable and only the scan out
signals are observable. Under this scenario, logic between the input
signals and their destination flip-flop and logic between the source
flip-flops and output signals are not testable.

• A best-case assumption in which all of the Lexra core I/O’s are
controllable and observable. While this scenario provides the best
fault coverage, it does require the use of a scan isolation collar
around the Lexra core. The design and implementation of this scan
collar is the responsibility of the customer.

Refer to Section 9.5, Testability Statistics for details on testability statistics under
best and worst case conditions.

9.1.2 Internal Scan Options

You can configure the Lexra core with or without internal scan.

The Lexra supported scan architecture is a full scan, muxed flip-flop
methodology.

You can specify the number of scan chains to be 1,2,4 or 8. The synthesis tool
creates the appropriate number of scan ports in the RTL code (where these ports
are not connected) and hooks up the scan chains in the synthesis flow.

Lexra 6-Stage Products User’s Guide Revision 5.0

126 LEXRA, INC. CONFIDENTIAL

You can also specify whether all flip-flops within the same scan chain must be in
the same clock domain. If you allow mixed clocks within a scan chain, Design-
Compiler(tm) inserts lockup latches in the scan chain between clock domains.
Separate clock domains typically have separate clock distribution trees. While the
clock skew within the same clock domain can be tightly controlled with careful
design methodology, it is much more difficult to control clock skew between clock
domains. Therefore, lockup latches, which typically operate on the negative edge
of the same clock as the leading flip-flop, are needed to avoid potential clock
skew problems between separate clock domains. The lockup latch has the effect
of delaying the transition of the scan output of the leading flip-flop by one-half a
clock cycle, thereby providing sufficient hold time to the scan input of the trailing
flip-flop. Multiple clocks per chain give Test-Compiler more flexibility to create
balanced scan chains, resulting in shorter maximum scan chain length and
therefore reduced test time.

9.1.3 Lconfig Options

The following lconfig options configure the Lexra core to have scan chains.

To control insertion of testability ports, and scan insertion during synthesis, select:

SCAN_INSERT = YES | NO

• If you select YES as the SCAN_INSERT option, scan will be
inserted in the core as well as in the optional MAC, LBC, and
EJTAG (if selected) and their scan enable and chains will be
brought out to the lx2 level. Turning on scan insertion will also
result in the following pins being exported outside of lx2:

• If you select NO as the SCAN_INSERT option, scan insertion
will be disabled during logic synthesis. No scan signals will
appear at the boundary of lx2.

SEN Scan enable

SIN Scan input (one per scan chain)

SOUT Scan output (one per scan chain)

TMODE Test mode signal

LEXRA, INC. CONFIDENTIAL 127

Lexra 6-Stage Products User’s Guide Revision 5.0

To control how many scan chains are inserted in the Lexra core (lx2 level), set:

SCAN_NUM_CHAINS = 1 | 2 | 3 | 4 | 8

• 1 -- One scan chain will be present in the core.

• 2 -- Two scan chains will be present in the core.

• 3 -- Three scan chains will be present in the core.

• 4 -- Four scan chains will be present in the core.

• 8 -- Eight scan chains will be present in the core.

To specify whether you will allow multiple clocks per scan chain, set:

SCAN_MIX_CLOCKS = YES | NO

• Choose YES if you would like to allow the scan chains to cross
clock boundaries.

• Choose NO if you do not want scan chains to not cross clock
boundaries.

Note that the Lexra core has up to 3 clock domains depending upon configuration
(SYSCLK, BUSCLK, and JTAGCLK). If you set SCAN_MIX_CLOCKS to NO,
you must ensure that you specify enough scan chains with the
SCAN_NUM_CHAINS options.

9.1.4 Internal Scan Interface

We designed the Lexra processor so that you can get high fault coverage by
controlling and observing a small subset of the I/O pins of the LX2 boundary.

The worst case fault coverage number as shown in Section 9.5.2, Example
assumes that the test hardware has access only to the following pins:

Lexra 6-Stage Products User’s Guide Revision 5.0

128 LEXRA, INC. CONFIDENTIAL

*N is the value SCAN_NUM_CHAINS selects.

The TMODE, or Test Mode, signal is used to configure the Lexra core for
testability. For example, in configurations that use an asynchronous reset, the
reset signals must be gated off by TMODE so that the asynchronous reset can be
explicitly controlled during ATPG. Otherwise, spurious resets could occur during
scan chain shifting or scan capture. The Lexra core uses TMODE to gate off
asynchronous resets. TMODE is also used to enable the memory scan collar.

Refer to section Section 9.7.3, Reset Distribution for further information regarding
reset signals and their impact on test.

input SYSCLKF Free-running system clock (only present if SLEEP is
selected)

input BUSCLKF Free-running bus clock (only present if SLEEP is
selected and LBC_SYNC_MODE is
ASYNCHRONOUS)

input SYSCLK Gated system clock.

input BUSCLK Gated bus clock (only present if LBC_SYNC_MODE
is ASYNCHRONOUS)

input JTAG_CLOCK Clock for JTAG and EJTAG

input JTAG_TRST_N Reset signal for JTAG and EJTAG

input ResetN Standard reset signal

input CResetN Power-up reset signal

input JTAG_RESET Buffered version of EJTAG reset domain

input TAP_RESET_N Buffered version of TAP reset domain

input RESET_D1_R_N Buffered reset for SYSCLK clock domain

input RESET_D1_BR_N Buffered reset for BUSCLK clock domain

input SEN Scan enable

input TMODE Test mode

input SIN[N-1:0]* Scan In bus

output SOUT[N-1:0]* Scan Out bus

LEXRA, INC. CONFIDENTIAL 129

Lexra 6-Stage Products User’s Guide Revision 5.0

9.1.5 Scan Enable Distribution

The scan enable signal, SEN, is a global signal. SEN requires proper distribution
and buffering. While it is rare for the scan chain to run at the full system clock
speed, it is necessary to ensure that the scan enable signal is properly buffered or
the design rule constraints of the ASIC or COT library will be violated. The
following lconfig options control the buffering and distribution of scan enable:

SEN_DIST = GLOBAL | LOCAL_BUFFERED | NONE

• Choosing GLOBAL causes a global scan enable signal to be
distributed throughout the core. No buffers will be placed on
scan enable, except optionally at the lx2 module level (refer to
SEN_BUFFERS option description below). Choose this option if
you prefer to use your own clock distribution scheme for scan
enable.

• Choosing LOCAL_BUFFERED causes the scan enable signal
to be buffered at each module boundary during scan synthesis.
Choose this option if you prefer to have synthesis buffer the
scan enable signal for you.

• Choose NONE only if you set SCAN_INSERT to be NO.

SEN_BUFFERS = LX2 | EXTERNAL | NONE

• Choosing LX2 causes a special buffer for scan enable signal to
be placed in the lx2 module boundary. The module will be
called lx2_senbuf. It will be necessary to replace this module
with your own clock buffer during final synthesis of the lx2
module. Choose this option only if you choose GLOBAL for
SEN_DIST and you wish to buffer scan enable inside lx2 rather
than at the full chip level.

• Choosing EXTERNAL results in no buffers being placed inside
the lx2 module boundary for scan enable. Choose this option if
you select LOCAL_BUFFERED for SCAN_DIST. Alternatively,
you can choose this option if you set SCAN_DIST to GLOBAL
and you wish to buffer scan enable at the full chip level rather
than at the lx2 level.

• Choose NONE only if you set SCAN_INSERT to be NO.

Lexra 6-Stage Products User’s Guide Revision 5.0

130 LEXRA, INC. CONFIDENTIAL

9.2 Memory Scan Collar

9.2.1 Scan Collar Overview

Most ATPG tools model RAM and ROM memories as black box elements. As a
result, any combinatorial logic on the RAM inputs and outputs will be untestable,
resulting in loss of fault coverage. Typically, the coverage loss can be as much as
3-5%, depending upon the cache and local memory configuration.

Therefore, the Lexra core includes an optional memory scan collar, which
provides the ability to observe the output of the logic cone connected to the RAM
inputs and to control the input of the logic cone connected to the RAM outputs.
The structure of the memory scan collar includes an observability flip-flop that
captures the signals between the logic internal to the lx1 module boundary and
the RAM inputs. This flip-flop, which is scannable, is also used to control the input
of a 2:1 mux which resides between the RAM outputs and the internal logic cone
inside lx1.

You can only implement the memory scan collar when you configure the Lexra
core with internal scan. The memory scan collar does induce a small area penalty
and also adds a 2:1 mux in the critical path of the RAM outputs. The RTL includes
the scan collar in the lx0c, between the lx0 and lx1 levels of the Lexra
hierarchy.

The memory scan collar does not provide test access to the RAM pins
themselves; such access is provided by the separate RAM BIST interface
described later in this chapter. Also, the memory scan collar does not provide
controllability or observability of the inputs and outputs of the lx2 module
boundary. Such controllability must be provided by an external scan collar, which
is not provided by Lexra.

9.2.2 LconfigOption

To control whether the memory scan collar is included, set the following option in
lconfig:

SCAN_SCL = YES | NO

• YES is only valid if you configure the Lexra core for internal
scan. When you specify a scan collar, it provides coverage on

LEXRA, INC. CONFIDENTIAL 131

Lexra 6-Stage Products User’s Guide Revision 5.0

all memories in your configuration. Note that the scan collar is
provided on all of the memory interfaces, including store and tag
RAMs. It is not possible to individually select which RAMs are
isolated using the scan collar.

• By choosing NO, no memory scan collar will be inserted.

9.2.3 Scan Collar Interface

Synthesis automatically merges the scan collar with existing scan chains for other
blocks. Therefore, the scan collar synthesis and ATPG is completely transparent
to the customer. The scan collar itself is not faulted during ATPG.

9.3 RAM Testing

9.3.1 RAM Test

To assist in the testing of the on-chip instruction and data memories specific to
the Lexra core, Lexra provides an optional RAM test port called the RAM BIST
interface.

The RAM BIST interface logic resides with the memory scan collar inside the
lx0c module. The RAM test logic is implemented using a 2:1 MUX on all of the
RAM cell inputs. One input of the mux is the normal signal between the Lexra
core and the RAM input. The other input of the mux is a signal external to lx2
which is driven by the customer’s test logic. The output of the mux goes directly to
the RAM input. The mux select is a signal external to lx2 which is also driven by
the customer’s test logic. The RAM outputs are also brought out to the lx2
module boundary so that the external test logic can observe them.

The RAMs can be tested in a variety of ways once the BIST interface is enabled;
although, the most common method is to use an on-chip BIST engine. Lexra
does not provide any special vectors to test the RAM, nor does Lexra provide the
BIST logic itself. User’s should consult directly with their memory vendor or
foundry regarding specific RAM test requirements and the proper implementation
of any BIST logic.

Selecting the RAM BIST interface does result in a 2:1 mux to be placed in the
critical path on the RAM inputs. It is safest to test the RAMs while you hold the
rest of the core in reset through the assertion of ResetN or CResetN.

Lexra 6-Stage Products User’s Guide Revision 5.0

132 LEXRA, INC. CONFIDENTIAL

9.3.2 LconfigOption

To specify a module providing access for memory testing in the Lexra Processor,
set:

RAM_BIST_MUX = YES | NO

You can set testing for RAMs whether or not you have implemented scan chains
and scan collars.

9.3.3 RAM Test Interface

The pins of the RAM test interface are described in detail in the product
datasheet. A typical configuration would include the following pins.

The RBC_SEL signal is used to control which memory is being tested. Only one
memory is selected for test at any given time, as there is only one set of interface
pins on the lx2 boundary:

input RBC_SEL[7:0] selects memory to test (see below)

input RBC_WE write enable to selected memory

input RBC_RE read enable to selected memory

input RBC_CS chip select to selected memory

input RBC_ADDR[15:0] address bits to selected memory

input RBC_DATAWR[63:0] write data bus to selected memory

output RBC_DATARD[63:0] read data bus from selected memory

RBC_SEL[7:0] Memory selected

10000000 IMEM

01000000 DMEM

00100000 Data cache data store

00010000 Data cache tag store

00001000 Instruction cache tag store, set 1

00000100 Instruction cache data store, set 1

00000010 Instruction cache tag store, set 0

00000001 Instruction cache data store, set 0

00000000 none, RAM BIST inactive

LEXRA, INC. CONFIDENTIAL 133

Lexra 6-Stage Products User’s Guide Revision 5.0

Please note that the above encoding for the RBC_SEL pins are subject to
change. For the latest encoding, please refer to the product datasheet. The
above encodings are primarily intended for illustrative purposes.

Both the RBC_ADDR and RBC_SEL vector are a fixed width no matter what the
user configuration. If a customer configuration does not implement a specific
memory (for instance, no DMEM), the behavior of the RAM test hardware is
undefined when RBC_SEL[6] is active. It should be always assigned logic 0.
Similarly, the number of RBC_ADDR bits in use in each memory depends on the
memory configuration. The customer is responsible for tying the high-order bits
inactive.

Some memories do not use the full complement of data bits and you need to
mask them.

The BIST, ATE or DMA engine needs to write and read the tag bits through
RBC_DATA_WR(N:1) and RBC_DATA_RD(N:1), where N is the width specified
in the RAM requirement summary.

For example, for the ICACHE TAG bits for set 1 (indicated by tag store and LRU
flag in the table), the width is 25 bits. The BIST, ATE, or DMA engine needs to
write them through RBC_DATA_WR(25:1) and read them through
RBC_DATA_RD(25:1).

For more details on memory requirements, see Chapter 4 Local Memory.

9.4 ATPG Vectors

9.4.1 ATPG Overview

Lexra provides ATPG scripts to generate internal scan vectors using TetramaxTM

from Synopsys.

To achieve the highest possible fault coverage using the Lexra core, it is
recommended that scan insertion and ATPG is done using the provided scripts.
Using the provided scripts also provides the user with a modular method of
performing DFT. Such a methodology can alleviate problems with EDA tool
capacity that can occur if scan insertion and ATPG are done flat at the top level.
Also, this approach also simplifies fault isolation in production test.

Lexra 6-Stage Products User’s Guide Revision 5.0

134 LEXRA, INC. CONFIDENTIAL

ATPG can be run at either the lx1 or lx2 module boundaries. Most users will
prefer to run at the lx2 module boundary, as that is the natural division between
the Lexra core and the customer logic. In some cases, however, the RAM
architecture assumed by lx2may not match that provided by the RAM vendor, in
which case additional customer logic is required inside the RAM wrappers. For
example, the only RAM available may be asynchronous (Lexra cores require
synchronous RAMs). Lexra’s synthesis scripts do not synthesize logic inside the
RAM wrappers; therefore, it will not incorporate any such logic into the scan
chain. In such cases, it is desirable to perform ATPG at the lx1module boundary
instead of lx2.

Regardless of the chosen module boundary, there are 2 conditions under which
ATPG may be run, best case and worst case. Under best case conditions,
controllability and observability of all the module I/O’s are assumed. Under worst
case conditions, minimal controllability and observability is assumed. In either
case, controllability and observability is assumed for those signals listed in the
table in Section 9.1.4, Internal Scan Interface. If any of the signals listed in
Section 9.1.4, Internal Scan Interface are uncontrollable or unobservable, it will
not be possible to use Lexra’s ATPG scripts, nor will it be possible to generate
vectors that result in high fault coverage.

To summarize the four conditions under which ATPG may be run:

• lx2_best: Assumes complete controllability of all of the I/O’s at the
lx2 module boundary. For such an assumption to be true, an
external scan collar around all of the module I/O’s must be
implemented by the customer.

• lx2_worst: Assumes controllability and observability only for the
module I/O’s listed in the table in Section 9.1.4, Internal Scan
Interface.

• lx1_best: Assumes complete controllability of all of the I/O’s at the
lx1 module boundary. For such an assumption to be true, an
external scan collar around all of the module I/O’s must be
implemented by the customer. Additionally, use of Lexra’s memory
scan collar is required. Refer to Section 9.2, Memory Scan Collar for
information on the memory scan collar.

• lx1_worst: Assumes controllability and observability only for the
module I/O’s listed in the table in Section 9.1.4, Internal Scan
Interface.

LEXRA, INC. CONFIDENTIAL 135

Lexra 6-Stage Products User’s Guide Revision 5.0

Lexra’s ATPG scripts do not generate test vectors for the RAMs inside the lx2
module boundary.

9.4.2 ATPG Generation Process

To generate scan test vectors using ATPG, please perform the following steps:

1. Edit your lconfig form to configure the Lexra core for scan.
You must set SCAN_INSERT option to be YES. Additionally, it
is recommended that you set SCAN_SCL to YES.

2. Run regression simulation.

3. Synthesize the core to the lx2 level (or lx1 if ATPG is to be
done at the lx1 level). Lexra recommends that ATPG be
performed at the lx2 module boundary.

4. Check the syn/lx2/chk_logs.log file for errors or
warnings. If none are present, and synthesis results are
satisfactory, you can proceed to ATPG generation.

5. Go to the user/tech directory and create a file called
lib_tmax. This file must contain a pointer to the standard cell
library to be used by Tetramax. An example of this file will
contain the command:

read netlist /<path_to_library>/<lib_name>.v -noabort -library

6. In the atpg directory, you will see 4 directories:

lx2_best
lx2_worst
lx1_best
lx1_worst

Choose the directory that matches the conditions under which you plan
to run ATPG. For example:

cd lx2_best

7. The ATPG process is Makefile driven. To create the ATPG
vectors, simply type make at the command line.

Lexra 6-Stage Products User’s Guide Revision 5.0

136 LEXRA, INC. CONFIDENTIAL

The ATPG process itself is a two-step process. First, TestCompilerTM is run to

check the scan design rules and generate the control files for TetraMaxTM. The
following files are produced:

lx2_atpg_scan.order: The scan order file, derived from the Verilog
netlist located at syn/lx2/lx2.hv.

lx2_atpg.tpf: The test protocol file used by TetraMax.

lx2_atpg.spf: The signal protocol file used by TetraMax.

lx2_atpg.autoxp: The detailed listing of the scan chains.

lx2_scan.scr.log: The log file from TestCompiler.

The output of TestCompiler will show some scan design rule violations. These
can be grouped into two categories:

• Non-scanned elements. The JTAG TAP controller is not
scanned; therefore, there will be violations being reported.
These can be ignored.

• Falling edge flip-flops. There are 2 falling edge flip-flops in the
design. One drives the TDO output of the JTAG TAP controller.
The second generates the DCLK output when PC_TRACE
option in EJTAG is selected. Both can be ignored.

As a rule, you can ignore the reported design rule violations unless your fault
coverage after ATPG is unexpectedly low.

Once TestCompiler completes, TetraMax is run to generate the scan vectors. In
most cases, the two steps will complete in one make step, so it will be invisible to
the user. In some cases, the script may abort after running TestCompiler. If this
should occur, simply run make again to run TetraMax.

The following files are created by TetraMax:

lx2_atpg_pat.v: The scan test vectors, along with a testbed that loads
the scan chain with the test patterns in a parallel format.

LEXRA, INC. CONFIDENTIAL 137

Lexra 6-Stage Products User’s Guide Revision 5.0

lx2_atpg_pat_s.v: A serial scan testbed, that simulates the serial
shifting in and out of the scan chain. Only 16 scan vectors are simulated
serially.

faults.AU, faults.UD: List of untestable and undectectable faults as
reported by Tetramax.

lx2_atpg_tmax.log: Log file produced by Tetramax.

Currently, the ATPG script only produces Verilog based test vectors. If different
vector formats are desired, you should rerun ATPG:

8. Type make clean at the Unix command prompt to delete the old
files.

9. Edit the file lx2_atpg_tmax.scr, and look for the line:

exit -force

Prior to this line, add the following command, which will create TSSI
vectors:

write patterns lx2.wgl -format wgl -internal -replace

This will create the file lx2.wgl , which will create patterns in a TSSI
format. Other formats include:

ftdl: Fujitsu TDL
stil: IEEE P1450.1
stil99: IEEE P1450.0
tdl91: TI TDL91
testgen: Sunrise
tstl2: Toshiba TSTL2

10. Rerun the Makefile script:

make

Lexra 6-Stage Products User’s Guide Revision 5.0

138 LEXRA, INC. CONFIDENTIAL

9.5 Testability Statistics

9.5.1 Overview

The testability results after ATPG will vary based on a number of factors,
including:

• Product type (LX4189, LX4280, LX5180, LX5280, LX8000).

• Product options, such as MAC, EJTAG, LBC, or TLB.

• Configuration options, including cache sizes, use of
coprocessors or custom engines, reset methodology
(synchronous vs. asynchronous).

• Testability options, such as the optional memory scan collar.

• If Lexra does the porting and layout of the design, Lexra may
add special enhancements to improve area or performance
such as latch-based register files or tri-state muxes.

Due to the wide variety of options available, it is not possible to guarantee a
specific level of fault coverage for the design. Most configurations should see at
least 90% fault coverage, with the majority exceeding 95% fault coverage.

9.5.2 Example

The following example illustrates the fault coverage results for a particular
configuration of the LX4189. Again, results will vary with configuration. The
illustrated configuration options from the lconfig form are shown below:

PRODUCT = "LX4189";
PRODUCT_TYPE = "RTL";
REGFILE_TECH = "FLOP";
TECHNOLOGY = "CUSTOM";
TESTBED_ENV = "CHIP";
RESET_TYPE = "ASYNCHRONOUS";
RESET_DIST = "GLOBAL";
SEN_DIST = "GLOBAL";
SEN_BUFFERS = "EXTERNAL";
SLEEP = "YES";
RESET_BUFFERS = "EXTERNAL";

LEXRA, INC. CONFIDENTIAL 139

Lexra 6-Stage Products User’s Guide Revision 5.0

CLOCK_BUFFERS = "EXTERNAL";
RAM_CLOCK_BUFFERS = "NO";
COP1 = "NONE";
COP2 = "NONE";
COP3 = "NONE";
CE0 = "CE_HL";
CE1 = "NONE";
M16_SUPPORT = "YES";
MEM_LINE_ORDER = "SEQUENTIAL";
MEM_FIRST_WORD = "DESIRED";
MEM_GRANULARITY = "BYTE";
SYSTEM_INTERFACE = "LBUS";
LBC_WBUF = 4;
LBC_RBUF = "2";
LBC_RDBYPASS = "YES";
LBC_SYNC_MODE = "SYNCHRONOUS";
LINE_SIZE = "4";
ICACHE = "16K_1";
DCACHE = "16K_1";
IMEM = "NONE";
IROM = "NONE";
IMEM_IS_ROM = "NO";
DMEM = "NONE";
LMI_DATA_GRANULARITY = "BYTE";
LMI_RANGE_SOURCE = "HARDWIRED";
LMI_RAM_ARB = "NO";
JTAG = "EXPORT_EXTENDED";
EJTAG = "YES";
EJTAG_INST_BREAK = 2;
EJTAG_DATA_BREAK = 1;
JTAG_TRST_IS_TPC = "YES";
PC_TRACE = "EXPORT";
EJTAG_DCLK_N = "2";
EJTAG_TPC_M = "1";
EJTAG_XV_BITS = "4";
EJTAG_PC_ISABIT = "YES";
SCAN_INSERT = "YES";
SCAN_MIX_CLOCKS = "YES";
SCAN_NUM_CHAINS = "8";
RAM_BIST_MUX = "YES";

The results of this configuration are shown in the table below, both with and
without the optional memory scan collar around the cache RAMs.

Lexra 6-Stage Products User’s Guide Revision 5.0

140 LEXRA, INC. CONFIDENTIAL

In this configuration, the memory scan collar improves fault coverage by close to
2%. It is also apparent that the difference between best and worst case ATPG
conditions is only about 0.5% for this configuration.

9.5.3 Interpreting ATPG Results

TetraMax produces a log file, lx2_atpg_tmax.log. The conclusion of this log
file includes a table that shows the testability results. An example log file is shown
below (from lx2_worst, SCAN_SCL=YES configuration from the above table):

Collapsed Stuck Fault Summary Report

fault class code #faults

Detected DT 137044
detected_by_simulation DS (100860)
detected_by_implication DI (36184)

Possibly detected PT 590
atpg_untestable-pos_detected AP (590)

Undetectable UD 2895
undetectable-unused UU (2)
undetectable-tied UT (1389)
undetectable-blocked UB (778)
undetectable-redundant UR (726)

ATPG untestable AU 1470
atpg_untestable-not_detected AN (1470)

Not detected ND 3
not-observed NO (3)

total faults 142002
test coverage 98.73%
fault coverage 96.72%
ATPG effectiveness 100.00%

Some definition of the terms is in order:

lx2_worst lx2_best

No memory scan collar (SCAN_SCL=”NO”) 95.1% 95.7%

Memory scan collar present (SCAN_SCL=”YES”) 96.7% 97.4%

LEXRA, INC. CONFIDENTIAL 141

Lexra 6-Stage Products User’s Guide Revision 5.0

• Detected faults are faults that were detected by the ATPG
vectors. A detected fault is one that causes a hard 1 vs. 0 failure
during pattern checking.

• Possibly detected faults are faults that cause an X value to
propagate to the output.

• Not Detected faults are faults that the ATPG tool failed to cover
when generating vectors. This number is normally very low.

• Undetectable are faults that do not propagate any hard 1 vs. 0
failures during pattern checking. These faults are typically either
not controllable (e.g., an input pin tied to VDD) are not
observable (e.g., an unused output of cell).

• Untestable faults are faults for which the ATPG tool cannot
generate a known good reference model. These faults are
commonly caused by non-scannable flip-flops or black-box
models such as memories.

• Fault coverage is the ratio of detected and possibly detected
faults to the total number of faults in the design. This is the most
conservative definition of fault coverage.

• Test coverage is similar to fault coverage, except that the
undetectable faults are removed from consideration. This
definition is less conservative than fault coverage.

• ATPG effectiveness removes all untestable and undetectable
faults from consideration. It is used to indicate how complete the
ATPG patterns test the faults that could be detected.

Customers should refer to the TetraMax documentation for detailed descriptions
of these fault classes.

9.6 TAP Controller

We have designed the Lexra TAP controller which is required for implementation
of the EJTAG option and optional in other configurations, to act as the only TAP
controller in a chip. Lexra provides an extended interface that allows the Lexra
TAP to control your boundary scan register and implement four of your
proprietary instructions. With this interface, it is possible to use one or more of the
proprietary instructions to control the internal scan chains inside the Lexra core.

Lexra 6-Stage Products User’s Guide Revision 5.0

142 LEXRA, INC. CONFIDENTIAL

See Chapter 8 EJTAG for the specification of the interface, and relevant
lconfig options.

9.7 Additional Considerations for Reset and Clock Distribution.

Like the distribution of scan enable, there are several options for the distribution
and buffering of clock and reset. While strictly not a testability feature, the
distribution of these signals can affect the overall test strategy.

9.7.1 Clock Distribution

The following pins on the lx2 module boundary are used for clocking the Lexra
core:

• SYSCLK is the main processor clock. If SLEEP mode is enabled,
this clock is gated by the SLEEP mode signal.

• SYSCLKF is the free-running version of SYSCLK. This pin exists
only if SLEEP mode is enabled. The SYSCLKF domain clocks the
wake-up circuitry inside the sleep mode logic.

• BUSCLK is the clock for the LBC, and is present only if
LBC_SYNC_MODE is ASYNCHRONOUS. This clock is gated by
the SLEEP mode signal if SLEEP mode is enabled.

• BUSCLKF is the free-running version of BUSCLK. This pin exists
only if SLEEP mode is enabled. The BUSCLKF domain clocks the
wake-up circuitry inside the sleep mode logic.

• JTAG_CLOCK is the clock for the JTAG TAP controller and some of
the EJTAG logic. It is used only if JTAG is set to EXPORT or
EXPORT_EXTENDED. This clock domain is NOT gated by SLEEP.

• SL_SLEEPSYS_R is used to indicate that the core has entered
SLEEP mode. This signal is synchronized to SYSCLK, and exists
only if SLEEP is set to YES.

LEXRA, INC. CONFIDENTIAL 143

Lexra 6-Stage Products User’s Guide Revision 5.0

• SL_SLEEPBUS_BR is used to indicate that the core has entered
SLEEP mode. This signal is synchronized to BUSCLK and exists
only if LBC_SYNC_MODE is ASYNCHRONOUS and SLEEP is set
to YES.

Additionally, the following lconfig options control clock buffering

CLOCK_BUFFERS = EXTERNAL | LX2

• Setting this parameter to EXTERNAL causes the clock inputs to
propagate directly from the lx2 module boundary to the
individual clocked elements in the design. No buffering is done
inside the Lexra core. This is the recommended setting. If this
option is set and SLEEP mode is set to YES, please refer to
Section 9.7.2, SLEEP and Clock Distribution for details on
proper clock distribution.

• Setting this parameter to LX2 will cause special clock buffers to
be instantiated inside the Lexra core. These clock buffer
modules are used as non-synthesizable place holders, which
must be replaced by the technology specific clock buffers
available from your ASIC or COT vendor.

Most users prefer to control clock distribution at the top-level of the design, so
setting this parameter to EXTERNAL will work for most technologies. If you set
this parameter to LX2 and SLEEP is not enabled, the following clock buffer cells
will be instantiated:

• lx2_sysclkbuf: Buffer for SYSCLK domain.

• lx2_busclkbuf: Clock buffer for BUSCLK domain. Only if
LBC_SYNC_MODE is ASYNCHRONOUS.

• lx2_jtagclkbuf: Clock buffer for JTAG TAP controller.

If, however, SLEEP is set to YES, the following clock buffers are instantiated
instead:

• lx2_slsysclkbuf: Buffer for SYSCLK domain. Also gates
SYSCLK with SLEEP signal.

Lexra 6-Stage Products User’s Guide Revision 5.0

144 LEXRA, INC. CONFIDENTIAL

• lx2_slsysclkfbuf: Buffer for SYSCLKF domain.

• lx2_slbusclkbuf: Clock buffer for BUSCLK domain. Also gates
BUSCLK with SLEEP signal. Used only if LBC_SYNC_MODE
is ASYNCHRONOUS.

• lx2_slbusclkfbuf: Clock buffer for BUSCLKF domain. Used only
if LBC_SYNC_MODE is ASYNCHRONOUS.

• lx2_jtagclkbuf: Clock buffer for JTAG TAP controller.

In addition to the main clock buffers, there is an lconfig option for the clock
signals on the cache RAMs:

RAM_CLOCK_BUFFERS = YES | NO

• Setting this parameter to NO causes the SYSCLK signal to
route directly to the clock pins on the cache and local memory
RAMs. This is the recommended setting for most technologies.

• Setting this parameter to YES will cause special clock buffers to
be placed inside the lmi modules. These clock buffer modules
are used as non-synthesizable place holders, which must be
replaced by the technology specific clock buffers available from
your ASIC or COT vendor.

Depending upon your configuration, if you set RAM_CLOCK_BUFFERS to be
YES, the following clock buffers will appear in the lmi_icache module:

• ic_ramclkbuf: Buffer for instruction cache RAM clock. Used only
if ICACHE is enabled in lconfig.

• iw_ramclkbuf: Buffer for instruction memory RAM clock. Used
only if IMEM is enabled in lconfig.

• ir_ramclkbuf: Buffer for instruction ROM clock. Used only if
IROM is enabled in lconfig.

Depending upon your configuration, if you set RAM_CLOCK_BUFFERS to be
YES, the following clock buffers will appear in the lmi_dcache module:

LEXRA, INC. CONFIDENTIAL 145

Lexra 6-Stage Products User’s Guide Revision 5.0

• dc_ramclkbuf: Buffer for data cache RAM clock. Used only if
DCACHE is enabled in lconfig.

• dw_ramclkbuf: Buffer for data memory RAM clock. Used only if
DMEM is enabled in lconfig.

9.7.2 SLEEP and Clock Distribution

If SLEEP mode is enabled, clock distribution requires more attention. The SLEEP
logic requires that the SYSCLK and BUSCLK domains be disabled when the core
enters SLEEP mode. However, the free-running clocks, SYSCLKF and
BUSCLKF, must still continue to toggle so that they can clock the wake-up logic.

If the lconfig option CLOCK_BUFFERS is set to LX2, the gating logic for
SYCLK and BUSCLK domains occurs inside the 2 clock buffer placeholders in
lx2, lx2_slsysclkbuf and lx2_slbusclkbuf. The design of these clock
buffers and the gating logic is the responsibility of the user.

If the lconfig option CLOCK_BUFFERS is set to EXTERNAL, the SLEEP
mode signals, SL_SLEEPSYS_R and SL_SLEEPBUS_BR will be exported out
of lx2. The user must then use these 2 signals to gate their incoming clocks. The
gated clock signals are then connected to SYSCLK and the BUSCLK inputs.

Under no circumstances should the free running clocks, SYSCLKF and
BUSCLKF, be gated with the SLEEP mode signal, or a deadlock condition
will result. These free running clocks are used to clock the wakeup logic inside
the Lexra core.

9.7.3 Reset Distribution

Reset of the Lexra core is complex. There are several domains, pins, and
lconfig options controlling reset and its distribution and buffering.

There are as many as four reset domains in the Lexra core: logic clocked by
SYSCLK, logic clocked by BUSCLK, the EJTAG logic clocked by the TAP clock,
and the TAP controller itself.

The TAP and EJTAG domains are similar. When the TAP controller is reset, it
immediately enters the TEST_LOGIC_RESET state. The EJTAG logic is reset
one cycle after the TAP controller has entered its TEST_LOGIC_RESET state.

Lexra 6-Stage Products User’s Guide Revision 5.0

146 LEXRA, INC. CONFIDENTIAL

The following signal pins on lx2 boundary control the reset of the core:

• CResetN: Cold Reset, also called PowerOn reset. This is the
primary reset of the core. When asserted, all 4 reset domains are
reset. When the core comes out of reset, it will fetch instructions
from the reset vector, 0xbfc0_0000.

• ResetN: Warm Reset. When asserted, only the SYSCLK and
BUSCLK domains are reset. This reset pin allows an EJTAG probe
to reset the core without resetting all of the EJTAG logic, which is
useful in software debug. Also, if an EJTAG probe is present, the
core will fetch instructions from the EJTAG probe when it comes out
of reset. There is also a software warm reset, which is accessible
only through the EJTAG probe.

• JTAG_TRST_N: The JTAG TAP reset. The TAP controller can also
be reset through the assertion of JTAG_TMS high for 5 clocks, so
the use of this pin is optional. Finally, there is a software reset of the
TAP controller, which is accessible only through the EJTAG probe.

There are three lconfig options that control reset:

RESET_TYPE = ASYNCHRONOUS | SYNCHRONOUS

• This parameter controls the type of reset flip-flop that will be
synthesized. Some ASIC/COT libraries use asynchronous
resettable flip-flops, others use synchronous resettable flops,
and others use both. This setting is normally determined by
customer design methodology and library vendor. With either
setting, the reset will be disabled during scan shifting. When set
to ASYNCHRONOUS, the reset will be disabled by TMODE,
which is typically asserted in both scan shift and capture.

LEXRA, INC. CONFIDENTIAL 147

Lexra 6-Stage Products User’s Guide Revision 5.0

RESET_DIST = GLOBAL | LOCAL_BUFFERED | LOCAL_SAMPLED

• When set to GLOBAL, a global reset signal is routed to the reset
pins of all the flip-flops in all reset domains. No logic or buffering
is placed on the reset signal. When set to GLOBAL, the
incoming reset signal will NOT be synchronized to any clock
domain. It is recommended that the customer synchronize the
de-assertion of reset to SYSCLK if this parameter is set to
GLOBAL and RESET_TYPE is set to ASYNCHRONOUS. Also,
the use of an asynchronous LBC (LBC_SYNC_MODE set to
ASYNCHRONOUS) is not recommended when this parameter
is set to GLOBAL.

• When set to LOCAL_BUFFERED, the incoming reset signal will
be re-synchronized to the appropriate clock domain using a 2-
stage synchronizer, and then distributed throughout the rest of
the core. During synthesis, buffers will be placed on the reset
signals as they enter each module boundary.

• When set to LOCAL_SAMPLED, the incoming reset signal will
be re-synchronized to the appropriate clock domain using a 2-
stage synchronizer, and then distributed throughout the rest of
the core. The reset signal will then be re-clocked at each module
boundary. This setting does simplify the timing analysis of reset,
and is recommended for high-performance designs. The only
disadvantage to this setting is an area penalty, and an increase
in latency during the reset sequence itself.

The reset domains inside the Lexra core are composed of logical functions of the
3 main reset pins, plus various software resets controlled by EJTAG. The
reset_dist module generates the actual reset signals based on the states of
the reset pins and software reset values. It is these generated resets, not the 3
reset pins listed above, that propagate throughout the registers of the
design. Therefore, these generated resets must be buffered. The buffering of
these reset signals is controlled through the use of the RESET_BUFFERS option
in lconfig:

Lexra 6-Stage Products User’s Guide Revision 5.0

148 LEXRA, INC. CONFIDENTIAL

RESET_BUFFERS = EXTERNAL | LX2

When CLOCK_BUFFERS is set to lx2, special clock buffer placeholder cells are
instantiated inside the lx2 module boundary. These placeholders must be
replaced by either a high drive clock buffer or buffer tree prior to synthesis of lx2.
The reset buffers inside lx2 are as follows:

• lx2_rstd1rbuf: This buffer distributes reset to the flip-flops
clocked by SYSCLK. Logical combination of cold and warm
reset (CResetN and ResetN). Also triggered by EJTAG software
reset.

• lx2_rstd1brbuf: This buffer distributes the reset to the flip-flops
clocked by BUSCLK. Logical combination of cold and warm
reset (CResetN and ResetN). Also triggered by EJTAG software
reset.

• lx2_rstjtagbuf: This buffer distributes the reset to selected
registers inside EJTAG. Triggered only when TAP controller
enters TEST_LOGIC_RESET state.

• lx2_rsttapbuf: This buffer distributes the reset domain to the
TAP controller. Triggered by the 3 conditions for TAP reset:
TRST_N assertion, TMS=1 for 5 clocks, or TAP software reset.

Additionally, if the RESET_DIST option is NOT set to GLOBAL, the following
buffers will also appear:

• lx2_rstpwrbuf: A buffered version of the CResetN, not
synchronized to any clock. This domain is used to reset
asynchronous handshaking logic inside the EJTAG module and
to reset the TAP.

• lx2_rstpwrd1buf: A buffered version of CResetN synchronized
to BUSCLK. Not used at this time.

If RESET_BUFFERS is set to EXTERNAL instead, the reset signals are
assumed to be buffered externally. Since the reset signals are generated deep
inside the Lexra core, it becomes necessary to output the generated reset signals
from lx2, and to create input pins for the buffered signals. Therefore, the
following signals will appear at the lx2 module boundary:

LEXRA, INC. CONFIDENTIAL 149

Lexra 6-Stage Products User’s Guide Revision 5.0

• RESET_D1_R_N_O: The generated version of the primary core
reset signal. A logical combination of CResetN, ResetN, and the
EJTAG software reset, synchronized to SYSCLK. An output of
lx2. (Note: signal is not synchronized to SYSCLK if
RESET_DIST=GLOBAL).

• RESET_D1_R_N: The buffered version of
RESET_D1_R_N_O. Resets core flip-flops clocked by
SYSCLK. An input to lx2.

• RESET_D1_BR_N_O: The generated version of the primary
core reset signal. A logical combination of CResetN, ResetN,
and the EJTAG software reset, synchronized to BUSCLK. An
output of lx2. (Note: signal is not synchronized to BUSCLK if
RESET_DIST=GLOBAL).

• RESET_D1_BR_N: The buffered version of
RESET_D1_BR_N_O. Resets core flip-flops clocked by
BUSCLK. An input to lx2.

• RESET_PWRON_C1_N_O: The generated version of the
PowerOn reset signal, used to reset asynchronous logic inside
EJTAG and the TAP controller. A logical equivalent of CResetN,
synchronized to SYSCLK. An output of lx2. (Note: signal is not
present if RESET_DIST=GLOBAL).

• RESET_PWRON_C1_N: The buffered version of
RESET_PWRON_C1_N_O. Not preset if
RESET_DIST=GLOBAL. An input to lx2.

• RESET_PWRON_D1_LR_N_O: The generated version of the
PowerOn reset signal, used to reset asynchronous logic inside
EJTAG and the TAP controller. A logical equivalent of CResetN,
synchronized to BUSCLK. An output of lx2. (Note: signal is not
present if RESET_DIST=GLOBAL).

• RESET_PWRON_D1_LR_N: The buffered version of
RESET_PWRON_D1_LR_N_O. Not present if
RESET_DIST=GLOBAL. An input to lx2.

• JTAG_RESET_O: Generated version of EJTAG reset signal.
Logically asserted one cycle after the TAP controller enters
TEST_LOGIC_RESET state. Used to reset registers in EJTAG
clocked by JTAG_CLOCK. An output of lx2.

Lexra 6-Stage Products User’s Guide Revision 5.0

150 LEXRA, INC. CONFIDENTIAL

• JTAG_RESET: Buffered version of JTAG_RESET. An input to
lx2.

• TAP_RESET_N_O: Generated version of TAP reset. Asserted
whenever JTAG_TRST_N or CResetN is asserted, when TMS
is asserted high for 5 clock cycles, or when the TAP software
reset is enabled by the EJTAG probe. An output lx2.

• TAP_RESET_N: Buffered version of TAP_RESET_N_O. An
input to lx2.

It is the responsibility of the user to ensure proper buffering exists between the
generated and buffered versions of the reset signals listed above. Also, Lexra’s
ATPG scripts assume that the input signals listed above are completely
controllable. Failure to provide controllability of these buffered reset inputs will
seriously degrade testability.

LEXRA, INC. CONFIDENTIAL 151

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 10

Using the Rundvt Regression Environment
Lexra RTL releases include rundvt and the regression test suite that Lexra uses
to validate the processor configuration. This test suite is used to verify the
customized RTL against a specific user configuration of the Lexra processor.
Rundvt and the Lexra testbed are not designed to be the primary means of
validating the entire ASIC application, nor does it easily integrate peripherals and
bus agents, develop software drivers, or do other ASIC development work.
Modifications are permitted; however, Lexra does not support the extended
rundvt environment for the entire ASIC development.

Rundvt is a software utility automating the simulation of self checking assembly
and C tests within a Verilog simulation environment. It automates the simulation
of the regression suite using test lists. Each test list is a simple Perl script. This
script calls rundvt subroutines that associate configuration information with a
specific test name. Section 10.4, Working with Test Lists gives more details.

Rundvt allows commands to be given to the simulator. Many command line
options can override rundvt’s default behavior. See Section 10.3.1, Standard
Command-Line Options for the most common and useful options, and
Section 10.3.2, Advanced Options for more advanced features. Thus, simulating
the configured core in the provided testbed with rundvt requires minimal
changes.

Rundvt is ordinarily used to verify the lconfig options within the Lexra testbed
after a configuration has been chosen. Additional tests may be written to check
specific features in the Lexra core. ASCII debug tracing and gate level simulation
are supported. These are described in Section 10.6, Generating ASCII Traces in
the Simulation Output and Section 12.6, Gate Level Simulation. Overall, rundvt
provides more than sufficient resources to run regression tests on the Lexra core.

Chapter

10

Lexra 6-Stage Products User’s Guide Revision 5.0

152 LEXRA, INC. CONFIDENTIAL

10.1 Rundvt Simulators

Rundvt currently offers support for the following Verilog simulators:

• VCS

• Verilog-XL

• NC-Verilog

Lexra may add support for other popular Verilog simulators in upcoming releases.

10.2 Setup

Refer to Section , Chapter 1Section , Lexra Development Environment for
rundvt and Perl installation setups.

10.3 Using the Command-line Options

The rundvt script is a generic front end for various Verilog simulators. Rundvt
automates regression testing by providing a complete interface to the testbed
Verilog module. The rundvt command line options include many of the testbed's
features.

Rundvt passes command line options it doesn't recognize to the Verilog
simulator in the same order that it sees them. This allows Verilog command line
options, top level Verilog modules, or gate level netlists to be passed to the
simulator.

The Getopt::Long Perl package and rundvt's &process_verilog_args
subroutine parse the rundvt commands. For more information on the operation
of the PERL package, see the documentation in the LSDK as specified below.

$LSDKDIR/perl/html/lib/Getopt/Long.html

The rundvt script contains a summary of the options it supports. Lexra often
enhances the script between product revisions, so there may be some
differences. It is recommend that new features are checked by invoking rundvt
with the -help option.

LEXRA, INC. CONFIDENTIAL 153

Lexra 6-Stage Products User’s Guide Revision 5.0

rundvt -help

Rundvt is insensitive to the order of options, tests, or Verilog command line
arguments with the exception of -help. This option must be the first argument
after rundvt.

rundvt [-help] [options] <test/test list> [Verilog commands]...

10.3.1 Standard Command-Line Options

This section describes the most common command line options. They are useful
when using rundvt as a means of performing basic validation of the current RTL
configuration, rundvt's most common use.

Rundvt supports the following often-used command line options.

rundvt <test/testlist>

One or more tests, or test lists (files automating the simulation of multiple tests)
may be specified. Test source code should be placed in the $LX_HOME/tests
directory. Assembly test files should have a “.s” extension and C programs
should have a “.c” extension. Test lists should be placed in the $LX_HOME/
regression directory and be given a “.pl” extension. See Section 10.3.3,
Passing Tests to Rundvt Through the Command Line for more information on
how rundvt knows which command line arguments are tests. Examples of
different test arguments:

rundvt regression.pl
rundvt -from_regression Logical.s Add.s
rundvt -from_regression hello.c

OPTION DESCRIPTION

-help Displays usage

<test/test list> Runs the specified test or test list

<Verilog commands> Commands, options, or arguments external to rundvt

Lexra 6-Stage Products User’s Guide Revision 5.0

154 LEXRA, INC. CONFIDENTIAL

rundvt <Verilog commands> <test/testlist>

Rundvt passes any unknown commands to the Verilog simulator. By default,
rundvt uses Synopsys VCS for Verilog simulation.

Examples of Verilog commands are relative paths, plus-args, and defines to
Verilog files. In the example below, RTL_MON is a Verilog macro definition and
+trace_all is a plus-arg.

rundvt regression.pl +define+RTL_MON +trace_all

Rundvt passes several compiler options such as

-l vcompile.log -Mupdate -V +cli +incdir+..

to the VCS compiler by default. The only way to change these arguments is to
edit rundvt. For more information on the cli and Verilog acc routines, see the
VCS man pages. -Mupdate causes VCS to create a csrc subdirectory
containing Makefile and C objects related to the Verilog compilation for use in
incremental compile.

rundvt -sim <vcs, ncv, vxl > <test/testlist>

VCS, NC-Verilog, or Verilog-XL simulators can be specified with rundvt from
the command line. Rundvt’s default verilog simulator is VCS. When invoking
VCS with rundvt -sim <vcs> is not required.

Note: Only certain Verilog simulators permit plus-args.

The default Verilog simulator arguments assumed by rundvt might not be
correct for your environment. If the simulator is not listed above and the default
Verilog simulator arguments are not correct for the simulator, then rundvt must
be edited to support it.

See regression/*.inpfiles for more information about the files used in Verilog
compilation (specifically: $LX_HOME/regression/*.inpfiles).

OPTION DESCRIPTION

vcs Synopsys VCS

ncv NC-Verilog

vxl Verilog-XL

LEXRA, INC. CONFIDENTIAL 155

Lexra 6-Stage Products User’s Guide Revision 5.0

10.3.2 Advanced Options

Lexra developers are the principal users of advanced command line options as
described in this section. These options are useful in tracing or debugging a
suspected problem in the RTL.

Lexra reserves the right to add or remove options. For the latest documentation
on available command line options, please use the on-line help rundvt -help .

rundvt -nomake <test/testlist>

Stops rundvt from compiling test programs. If this option is present, rundvt will
not call the $LX_HOME/tests/Makefile to compile the test programs into a
<test>.bin (ASCII binary file) format. Rundvt will expect a <test>.bin file to
be available in the $LX_HOME/tests/obj directory when this option is used.

rundvt -norun <test/testlist>

No tests are performed. This option lists the tests that rundvt would run. It
shows the individual test file name in a testlist file.

rundvt -tools <string> <test/testlist>

The test or testlist is compiled and simulated in Lexra’s testbed for a specific
software tool chain other than the specified default. The specified default for
software compiler and execution target is defined in $LX_HOME/tests/
tools.mk file which is generated by lconfig. Software tool chains supported
are shown below.

Software Tool-chain Options

STRING DESCRIPTION

lsdk Lexra Software Developer’s Kit

lsdk-mips16 Lexra Software Developer’s Kit MIPS16

ghs Green Hills

ghs-mips16 Green Hills MIPS16

Lexra 6-Stage Products User’s Guide Revision 5.0

156 LEXRA, INC. CONFIDENTIAL

rundvt -sim <asym, pass2> <test/testlist>

In addition to vcs, ncv, and vxl, the -sim option also compiles and
simulates tests in Lexra’s testbed for the Instruction Set Simulators.

rundvt -simopts <string> <test/testlist>

The -simopts is used in conjunction with -sim for non-Verilog simulators. The
-simopts <string> option passes non-Verilog simulator options to the
simulator. The example below instructs the pass2 simulator to display the log to
STDOUT instead of a file.

rundvt -sim=pass2 -simopts=’-v 2’

Specific options for the non-verilog simulators can be displayed using:

rundvt -help -sim=<non-verilog simulator>
perl simif.pl -help
perl simif.pl -simif”=<non-verilog simulator> -help”

rundvt -top <file> <test/testlist>

Overrides the default top level Verilog modules and passes one Verilog file from
the command line to the Verilog simulator. Rundvt uses one pair of Verilog top
level modules, $LX_HOME/testbed/testbed.v and $LX_HOME/chip/
topchip.v. Set the lconfig option TESTBED_ENV to "CHIP" in $LX_HOME/
user/lx----.form file. For customized top level simulation, specify the top
verilog module name using the -top option as in the example below.

rundvt -top your_top_file.v...

OPTION DESCRIPTION

asym Instruction Set Simulation Debugger

pass2 Cycle Accurate Instruction Set Simulator

LEXRA, INC. CONFIDENTIAL 157

Lexra 6-Stage Products User’s Guide Revision 5.0

rundvt -notop <file> <test/testlist>

Stops rundvt from adding the default top level Verilog modules to the Verilog
simulator's command line and allows for a different top level module.

rundvt -notop top1.v top2.v topN.v Logical.s

rundvt -sim_only <test/testlist>

When using VCS, the default Verilog simulator, this option stops rundvt from
calling VCS Verilog compiler. This feature assumes that the VCS simv
executable already exists in the regression directory and runs the simulations
using this executable.

rundvt -gen_only <test/testlist>

When using VCS, the default Verilog simulator, this option stops rundvt from
calling simv, the Verilog simulator executable. It will only compile. This feature
calls the VCS simulator without the -R option that causes simv to execute
immediately following a successful compilation.

rundvt -quiet <test/testlist>

Stops rundvt from printing verbose messages to standard output.

rundvt -notty <test/testlist>

Stops rundvt from printing of nearly all messages to standard output.

rundvt -continue <test/testlist>

Rundvt calls the verilog simulator many times with different command line
options, depending on the nature of the tests in test files or test lists. If rundvt
encounters an error within a verilog simulation with specified verilog command
line options, it will finish that simulation with error messages. Subsequent
simulation calls within the rundvt test list will not occur. Rundvt exits regression
testing with an error message similar to the one shown below. Using -continue
option allows rundvt to continue and finish regression testing of all tests.

Lexra 6-Stage Products User’s Guide Revision 5.0

158 LEXRA, INC. CONFIDENTIAL

V C S S i m u l a t i o n R e p o r t
Time: 87026000 ps
processor Time: 1.110 seconds; Data structure size: 18.4Mb
Fri Apr 13 11:49:24 2001
INFO: rundvt Results of simulation
INFO: rundvt PASS: 1; FAIL: 0
INFO: rundvt Execution Complete
ERROR: rundvt Expected 2 total passes but observed 1
ERROR: rundvt Total PASS 1
ERROR: rundvt Total FAIL 0

rundvt -batch <test/testlist>

When using VCS 6.0, the -batch command configures the Verilog
compilation flags for faster simulation by turning off CLI.

rundvt -gates ../syn/xxx/xxx.hv <test/testlist>

Allows Verilog to compile and run gate level simulation. All hierarchical
references which are made by the Verilog testbed are disabled. This is done
automatically with -gates option which invokes -nopeeking. Rundvt -
gates adds a file called $LX_HOME/user/custom/tech/gate.f which
includes the ASIC cell libraries. See Section 12.6, Gate Level Simulation.

rundvt -nopeeking <test/testlist>

This option is also invoked as part of -gates. Hierarchical references are
disabled by removing +define+LOCAL_MON in the verilog testbed. See
Section 10.6.1, Tracing Through Hierarchical References.

rundvt -seed <#> <test/testlist>

Sets the random seed number with either the number from the command line or
the default time or’ed with process ID. Rundvt passes this number to the Verilog
testbed, where it becomes the initial seed for a 16-bit random number generator.
The Verilog testbed uses this random number generator during internal Lexra
testing to randomize the behavior of an ICACHE pre-loader and to define random
values for exported lconfig options.

LEXRA, INC. CONFIDENTIAL 159

Lexra 6-Stage Products User’s Guide Revision 5.0

rundvt -nops <#> <test>

Causes the test object to be loaded into the memory model with 0 to 3 words of
offset from the.text segment. Default: 0.

Some assembly tests can be arbitrarily relocated without the LSDK tool chain re-
linking them. The -nops feature allows internal Lexra testing of assembly tests.
The Verilog testbed loads the test at four different word offsets, causing cache
line crossings between every instruction and the next.

The tool chain must re-link all C programs and assembly programs that use the
JAL, JALR, or J instruction, or the LA pseudo instruction, as well as any tests that
are not relocatable, to relocate them. Therefore, for these types of tests, only use
zero nops to avoid recompilation.

rundvt -exact_nops <#> <test/testlist>

Sets the number of nops in front of the test object. The number of nops can be
specified from 0 to 3. The test only runs once, offset in memory by <#> nops.

rundvt -pmon <test>

Boots PMON and runs tests as PMON client applications. The Verilog testbed
loads the PMON object into system memory at virtual address 0xBFC0_0000;
overwriting the default initialization code (Trap_BEV1.s and Reset_pgm.s).

rundvt -pmonpath <path> <test>

Allows to load pmon from a different directory location other than the default.
Default: $LSDKDIR/pmon/build/LX4x80/upmon.bin

rundvt -load <file>=<hex address> <test>

Loads an ASCII binary file into the memory model at the virtual address. The
testbed loads this file into the memory model in the Verilog testbed using the
$readmemb Verilog system call.

Lexra 6-Stage Products User’s Guide Revision 5.0

160 LEXRA, INC. CONFIDENTIAL

Rundvt compiles the assembly program using the $LX_HOME/tests/
Makefile. It puts the resulting ASCII binary file into $LX_HOME/tests/obj. In
the example below, a file named myfile.s exists in the tests directory and
has been compiled.

rundvt -load myfile.bin=0x00500000 ...

rundvt -set <hex address>=<hex data> <test/testlist>

Sets a word of data at the virtual address specified in the Verilog testbed memory
model.

rundvt -script <ASCII binary file> <test/testlist>

Loads a PMON script file into system memory at virtual address 0xA040_0000.
This feature can be used two ways:

• If the PMON script has been compiled into an ASCII binary, provide
the full path of the compiled ASCII binary script file.

The $LX_HOME/tests/Makefile observes that the ASCII binary script file
already exists and does not compile the file. The makefile appends 32 bits of
zeros to the compiled ASCII binary script file. They serve as a string terminator.

img2bin ~/myscript.scr ~/myscript.bin
echo 00000000000000000000000000000000 >> ~/myscript.bin
rundvt -pmon -script ~/myscript.bin ...

• Put the PMON script in the $LX_HOME/tests/pmon.usr directory
and let rundvt convert it.

Rundvt converts the PMON script file into an ASCII binary. Rundvt calls
$LX_HOME/tests/Makefile from the $LX_HOME/tests/obj directory.
Therefore, make the path to the file a path relative to the $LX_HOME/tests/obj
directory.

The PMON script file must be placed in the $LX_HOME/tests/pmon.usr
directory, for example $LX_HOME/tests/pmon.usr/BPscript.scr.
Rundvt expects the target to be the compiled PMON script file instead of the
source.

rundvt -pmon -script ../pmon.usr/BPscript.bin ...

LEXRA, INC. CONFIDENTIAL 161

Lexra 6-Stage Products User’s Guide Revision 5.0

rundvt -trap_bev1 <file> <test/testlist>

Specifies a file for the testbed to load at 0xBFC0_0100 for the BEV1 trap handler
other than the default trap bev1 file. Default: $LX_HOME/tests/system/
Trap_BEV1.s.

rundvt -trap_bev0 <file> <test/testlist>

Specifies a file for the testbed to load at 0x8000_0000 for the BEV0 trap handler
other than the default trap bev0 file. Default: $LX_HOME/tests/system/
Trap_BEV0.s.

rundvt -reset <file> <test/testlist>

Specifies a file for the testbed to load at 0xBFC0_0000, the boot vector other that
the default reset program. Default: $LX_HOME/tests/system/
Reset_pgm.s.

rundvt -watch <hex physical address> -watch_stop <test>
+define+RTL_MON

The -watch option causes the $LX_HOME/testbed/lmon.v module to watch
for a physical instruction address on the internal processor bus LBUS or CBUS.
When the module sees the address, it either enables ASCII traces if the rundvt
-watch_trace 0xFF is present or calls $stop if the rundvt option -
watch_stop is present, and prints a message.

The -watch_stop option is used in conjunction with -watch <hex
address>. When invoked and when the address in simulation matches <hex
address> then the testbed will call the $stop Verilog system call. Default is no
$stop.

These options requires +define+RTLMON option.

rundvt -watch 0x40400038 -watch_stop <test> +define+RTL_MON

Database tag: ZL 348
Processor id: 0000c401
INST ADDR WATCHPOINT 0x40400038 detected -- enabling trace
$stop at time 19357500 Scope: topsys.lx_base.lx2.LMONW.LMON.inst_monitor File: ../testbed/
lmon.v Line: 1500
cli_0 >

Lexra 6-Stage Products User’s Guide Revision 5.0

162 LEXRA, INC. CONFIDENTIAL

rundvt -watch_mask <hex> <test> +define+RTL_MON

The default mask 0xFFFFFFFF is logically anded with the current address. This
allow the testbed to watch only for the <hex address>. Clearing any mask bits
allows the testbed to watch for a range of addresses. For example, the address
range watch for mask 0xFFFF0000 is from 0xFFFF0000 to 0xFFFFFFFF.

rundvt -watch 0x40400038 -watch_mask 0xFFFFFFF0 -watch_stop
<test> +define+RTL_MON

INST ADDR WATCHPOINT 0x40400030 detected -- enabling trace
$stop at time 14457500 Scope: topsys.lx_base.lx2.LMONW.LMON.inst_monitor File: \../testbed
/lmon.v Line: 1500
cli_0 > .
INST ADDR WATCHPOINT 0x40400034 detected -- enabling trace
$stop at time 14467500 Scope: topsys.lx_base.lx2.LMONW.LMON.inst_monitor File: \../testbed
/lmon.v Line: 1500
cli_1 > .
INST ADDR WATCHPOINT 0x40400030 detected -- enabling trace
$stop at time 19337500 Scope: topsys.lx_base.lx2.LMONW.LMON.inst_monitor File: \../testbed
/lmon.v Line: 1500

rundvt -watch_trace <hex> <test> +define+RTL_MON

The -watch_trace <hex> is used in conjunction with -watch <hex
address>. When the Verilog simulator reaches a watch point, LMON overwrites
the MonPath MONTrace Verilog variable which enables the ASCII trace. 0xFF is
equivalent to +trace_all. For more information on ASCII traces see
Section 10.6, Generating ASCII Traces in the Simulation Output.

rundvt -watch 0x40400038 -watch_trace 0xff <test> +define+RTL_MON

Database tag: ZL 348
Processor id: 0000c401
INST ADDR WATCHPOINT 0x40400038 detected -- enabling trace
19362500 M000>>> DATA 0x404087b4 wr c 1111 mem hit 0x00000000
19367500 M000>>> INST 0x4040003c rd c 1111 mem hit 0x0043082a
19372500 M000>>> DATA 0x404087b8 wr c 1111 mem hit 0x00000000
19372500 M000>>> SYS 0x404087b0 wr c 1111 mem - 0x00000000

rundvt -Ttext <hex> <test/testlist>

Set the “.text” segment code location. Make the hex address a logical address.
Default: 0x0040_0000.

LEXRA, INC. CONFIDENTIAL 163

Lexra 6-Stage Products User’s Guide Revision 5.0

rundvt -drambase <hex address> <test> +define+RTL_MON

Overrides the DMEM settings lconfig normally sets. Rundvt instructs the
testbed to use hierarchical assignments to set the DMEM base address which
must be a physical address.

rundvt -drambase 0x4040800 <test> +define+RTL_MON

rundvt -irambase <hex address> <test/testlist>

Sets the IMEM base address. The hex address must be a physical address.

rundvt -load_imem <test> +define+RTL_MON

Instruction data is directly loaded into the local instruction memory from main
memory at simulation start. The test program does not have to wait for the
simulator to load instruction data from main memory to IMEM through the system
bus. This option works only with RTL models in Lexra’s testbench.

rundvt -from_regression <test>

This option ensures that the test being simulated is from the regression.pl file
which contains the list of valid tests.

rundvt -from_regression LdSt_stress.s

rundvt -from <test> <testlist>

Allows a subset of tests in the testlist to be simulated. From a testlist, the
simulator will start from the <test> file as specified. The last test can be specified
with -to <test>. If the last test is not specified, then the simulator will run tests
until the last test in the testlist. In the rundvt.log file, list of tests that are skipped is
displayed.

rundvt -from LdSt_stress.s regression.pl

rundvt.log
%I-rundvt Skipping LoadStore [219] because it is before -from starting p oint

Lexra 6-Stage Products User’s Guide Revision 5.0

164 LEXRA, INC. CONFIDENTIAL

rundvt -to <test> <testlist>

Allows a subset of tests in the testlist to be simulated. From a <testlist>, the
simulator will start from the beginning of the test list and end when it reaches the
end of <test> as specified with -to. The first test can be specified with -from
<test>. In the rundvt.log file, list of tests that are skipped is displayed.

rundvt -to LdSt_stress5d.s regression.pl

rundvt.log
%I-rundvt Skipping LdSt_segments [231] because it is after -to ending point

rundvt -from <test> -to <test> <testlist>

Combination of both -from and -to may be used to run a subset of the test list.

rundvt -from LdSt_stress.s -to LdSt_stress5d.s regression.pl

rundvt -from <#> <testlist>

Allows a subset of tests in the testlist to be simulated. From a <testlist>, the
simulator will start from the # as specified. The last test can be specified with -to
<#>. If the last # is not specified, then the simulator will run tests until the last test
in the testlist. Before using this option, the testlist must have been simulated at
least once. The # for the corresponding test from the testlist is found in the
rundvt.log.

rundvt.log
%I-rundvt run_test (LdSt_stress.s [221] 0x00400000 NOPS3)
%I-rundvt run_test (LdSt_stress2.s [222] 0x00400000 NOPS3)
%I-rundvt run_test (LdSt_stress3.s [223] 0x00400000 NOPS3)
%I-rundvt run_test (LdSt_stress4.s [224] 0x00400000 NOPS3)
%I-rundvt run_test (LdSt_stress5a.s [225] 0x00400000 NOPS3)
%I-rundvt run_test (LdSt_stress5b.s [226] 0x00400000 NOPS3)
%I-rundvt run_test (LdSt_stress5c.s [227] 0x00400000 NOPS3)
%I-rundvt run_test (LdSt_stress5d.s [228] 0x00400000 NOPS3)

LEXRA, INC. CONFIDENTIAL 165

Lexra 6-Stage Products User’s Guide Revision 5.0

rundvt -to <#> <testlist>

Allows a subset of tests in the testlist to be simulated. From a <testlist>, the
simulator will start from the beginning of the test list and end when it reaches the
end of # as specified with -to. The first test can be specified with -from <#>.
Before using this option, the testlist must have been simulated at least once. The
for the corresponding test from the testlist is found in the rundvt.log.

rundvt -from 221 -to 228 regression.pl

10.3.3 Passing Tests to Rundvt Through the Command Line

It is sometimes necessary to use tests outside of Lexra's regression suite. Doing
so is an advanced option. If necessary, writing and adding new tests to the
standard regression suite is allowed.

In examining its own arguments, rundvt must be able to differentiate among
tests, test lists, rundvt options, and similar command-line options. It compares
its arguments against the supported options, then compares all other arguments
to one of assembly tests, C programs, or lists of tests. Finally, it passes all
unrecognized arguments to the target simulator as command line options.

For example,

rundvt regression -seed 8228 +define+RTL_MON +trace_all ...

Rundvt first strips away the options it knows about:

-seed 8228

Rundvt recognizes the type of file by its extension: “.s” (assembly program),
“.c” (C program), or “.pl” (rundvt test list). If the file exists, rundvt handles it
appropriately.

Rundvt checks all the options against the files within the regression and the tests
directories. If a corresponding file does not exist, rundvt passes the option to the
Verilog simulator.

For example,

rundvt regression

Lexra 6-Stage Products User’s Guide Revision 5.0

166 LEXRA, INC. CONFIDENTIAL

It tries the three extensions, “.pl” “.s”, “.c” and finds $LX_HOME/regression/
regression.pl.

Regression.pl is a test list, namely the comprehensive list of all the tests
under the $LX_HOME/regression directory.

For example,

rundvt +define+RTL_MON ...

It tries the three extensions, “.pl”, “.s”, ” .c” and fails to find

$LX_HOME/regression/+define+RTL_MON.pl
$LX_HOME/tests/+define+RTL_MON.c
$LX_HOME/tests/+define+RTL_MON.s

Then rundvt passes +define+RTL+MON directly to the Verilog simulator as a
command-line option.

For example,

rundvt +trace_all ...

It tries the three extension and fails to find

$LX_HOME/regression/+trace_all.pl
$LX_HOME/tests/+trace_all.c

$LX_HOME/tests/+trace_all.s

Then rundvt passes +trace_all directly to the Verilog simulator as a
command line option.

If rundvt encounters a test list like regression.pl, it executes the file as a PERL
program, using the require directive.

If rundvt identifies an option as a stand-alone test like “Logical.s”, rundvt
tries to call make to compile the assembly and C programs.

cd ../tests/obj; /opt/lsdk/bin/make -f ../Makefile Logical.bin

LEXRA, INC. CONFIDENTIAL 167

Lexra 6-Stage Products User’s Guide Revision 5.0

Rundvt can detect ASCII binary files at the rundvt command line. The “.bin”
file path should be specified so that rundvt can load the file into the Verilog
simulator.

rundvt /home/your_work/foo.bin
rundvt ~/your_work/foo.bin

Lexra does not recommend using a relative path to an ASCII binary file on
rundvt command line. Rundvt calls the $LX_HOME/tests/Makefile from
within the $LX_HOME/tests/obj directory, referencing the ../ directory where
tests are located. For example,

rundvt ../myfiles/foo.bin

The make program reports:

make: Nothing to be done for `../../myfiles/foo.bin'.

If the binary file does not exist relative to the $LX_HOME/tests/obj directory,
rundvt returns the following error:

cd ../tests/obj; /opt/lsdk/bin/make -f ../Makefile foo.bin
make: *** No rule to make target `foo.bin'. Stop.
%E-Testloader Call make compile has failed >512<

The -nomake option stops the call to make.

rundvt -nomake foo.bin

10.4 Working with Test Lists

Rundvt provides a single interface for running test lists and/or tests at the
rundvt command line. Before running tests within a test list, rundvt will
determine if the test matches the configuration restrictions specified in the test list
against the current configuration contained within $LX_HOME/include/
lxr_symbols.vh.

When tests are added to the rundvt command line, they will always be

Lexra 6-Stage Products User’s Guide Revision 5.0

168 LEXRA, INC. CONFIDENTIAL

executed regardless of the configuration. This presents the opportunity for
regression tests to fail falsely when they do not match the current configuration.
Refer to the $LX_HOME/regression/regression.pl test list to learn the
configuration dependencies of regression tests to prevent false failures. See
Section 10.4.2, Running Tests at the Rundvt Command Line for further
information.

10.4.1 Test List File Format

A test list file contains PERL code invoking the &run_test subroutine that the
rundvt script defines. A test-list file can only contain legal PERL code. If there
are syntax errors in a test list file, rundvt fails with syntax errors.

%I-rundvt Found test-list <test list> <testlist.pl>
Semicolon seems to be missing at <test list> line <#>.
syntax error at <test list> line <#>, near "run_test"

You can put any legal PERL code in a test list. The most common command is
the &run_test subroutine.

run_test (test-name, # nops, lconfig, Verilog args, test-base, ...);

The first four arguments must be used. The test-base is optional as well as any
newer arguments in the run_test list.

test-name

The name of the test with the source file extension “.s” or “.c”. The makefile
compiles tests into the $LX_HOME/tests/obj directory. It may mangle the
binary file names to let one test produce multiple binaries.

nops

The nops argument to &run_test sets the number of times to loop through the
test with insertion of 0 to 3 nops at the beginning of the code. This causes the test
to start at different memory offsets. Another PERL subroutine, &run_test_raw,
lets the test run only once, with the specified number of nops. This is similar to
- exact_nops <#>.

LEXRA, INC. CONFIDENTIAL 169

Lexra 6-Stage Products User’s Guide Revision 5.0

lconfig

If the test depends on one specific configuration, a simple expression can be
composed to prevent the test from running in an unsupported configuration. The
operator precedence from highest to lowest is: ==, !=, &, and |. Using these
operators require the arguments to be enclosed between double quotes.

run_test(“hello.c”,
0,“$NOTNVX&(CE0==CE_MAC|CE0==CE_MACD...)”, “”);

x = 0 or 1

Verilog options

Each test can be set to run in its required specific configurations. The Verilog
options field contains a string with any number of Verilog command line options.
Each unique string may cause additional Verilog compilations.

+define+CLD_BusClkRatio3to1 +trace_all

test-base (optional)

This argument specifies the “.text” segment that determines where the
program is loaded in system memory. Leaving it blank indicates the test does not
require re-linking to be relocated. If it requires linking, then place RECOMPILE in
this argument. C programs must always be recompiled.

10.4.2 Running Tests at the RundvtCommand Line

Lexra bundles the $LX_HOME/regression/regression.pl test list with the
regression suite to automate the simulation. Most regression tests depend on a
specific lconfig configuration. Rundvt runs tests that match the configuration
in the $LX_HOME/include/lxr_symbols.vh file.

OPTION DESCRIPTION

"CEx == CE_DVT" Apply this test if ce is ce_dvt

"CEx == CE_DVT|CE == CE_MAC" Apply this test if either ce_dvt or ce_mac

"CEx == CE_DVT&CE != CE_MAC" Apply this test if ce_dvt and not ce_mac

Lexra 6-Stage Products User’s Guide Revision 5.0

170 LEXRA, INC. CONFIDENTIAL

When running tests from the rundvt command line there are no such
guarantee. The “PM3_icnt.s” assembly regression test is designed to test
some features of the coprocessor performance counters. This can only be run if
the lconfig form selected COPTC3 on the coprocessor 3 port. In addition, nops
has to be set to zero.

run_test("PM3_icnt.s", 0, "COP3=COPTC3");

If using “rundvt PM3_icnt.s” on the command line, it runs the test regardless of
the configuration, which might result in false failures or false passes. If tests are to
be executed from the command line, use the -from_regression option. This
will allow rundvt to check against $LX_HOME/include/lxr_symbols to
ensure that the tests are valid for the particular lconfig option and to run the test
properly.

10.5 Simulation Flow

The rundvt script provides a communication mechanism between PERL and
the Verilog simulation environment without using PLI. Rundvt encodes
commands and puts them in the $LX_HOME/regression/testloader.hex
file, which the $LX_HOME/testbed/testbed.v module interprets during
simulation. This provides a robust, one-way communication between PERL and
Verilog.

The commands in testloader.hex appear in Verilog format in the
“testloader.vh” file. The testloader.hex file is read into a memory array
within the $LX_HOME/testbed/testbed.v module. If rundvt composes
commands which exceed the bounds of the memory array, errors will result. The
following Verilog code fragment is in $LX_HOME/testbed/testbed.v. It
defines a memory test list, which the testbed loads with $LX_HOME/
testloader.hex.

reg [`TEST_LENGTH:1] test_list [`MAXTESTS:1];

10.6 Generating ASCII Traces in the Simulation Output

The Lexra bus monitor module $LX_HOME/testbed/lmon.v can be enabled
during Verilog simulation to generate ASCII debug traces. The $LX_HOME/
testbed/testbed.v determines which signals to trace with Verilog plus-args.
A subset of traces requires that the Verilog macro RTL_MON be defined;
therefore, only use them for RTL simulation.

LEXRA, INC. CONFIDENTIAL 171

Lexra 6-Stage Products User’s Guide Revision 5.0

`MonPath MONTrace[`MonTraceI] = $test$plusargs("trace_inst");

+trace_all

The +trace_all option enables the tracing of the internal ICACHE bus, the
internal DCACHE bus, and the system bus. These traces are enabled individually
with the following plus-args: +trace_inst, +trace_data and
+trace_system.

Here is a sample output generated by the +trace_all option.

13620000 M000>>>> DATA 0xbfa00020 wr c 1111 mem hit 0xffffffff
13630000 M000>>>> INST 0x00400018 rd c 1111 mem hit 0x3442aaaa
13657800 M000>>>> SYS 0x1fa00020 wr c 1111 mem - 0x9fa020e8
13760000 M000>>>> INST 0x0040001c rd c 1111 mem hit 0x3c03ffff
13770000 M000>>>> INST 0x00400020 rd c 1111 mem miss 0xad00000c

The following table defines the labels used in the example.

TYPE LABEL DESCRIPTION

Time decimal number Time stamp produced by the $time Verilog system
task.

ID Tag Identifies which processor is being traced in a
multiprocessor system. A multiprocessor system
requires TESTBED_ENV==EXAMPLE.

M000 Processor M00, thread 0.
(note: thread is always 0 in single thread processor).

M103 Processor M10, thread 3.

Trace Domain Identifies which field is traced.

INST Instruction cache bus.

DATA Data cache bus.

SYS Lexra system bus.

Address hexadecimal
number

If the trace domain is INST or DATA then this field is
a logical address. Otherwise it is a physical address.

Operation rd Read.

wr Write.

Cache Type c Operations to cached address spaces.

u Operations to uncached address space.

Lexra 6-Stage Products User’s Guide Revision 5.0

172 LEXRA, INC. CONFIDENTIAL

+trace_pipem +define+RTL_MON

This option traces the M-stage of the pipeline and disassembles the instructions
in pipe A. In superscaler products, pipe B is also displayed.

Single Issue Processor:

13787500 M000>>>PIPEA M-->W: RETIRE: 0x9fa02110: 37bd0008 ori$sp,$sp,x0008
13792500 M000>>>PIPEA M-->W: RETIRE: 0x9fa02114: 8fbd0000 lw$sp,x0000($sp)
13867500 M000>>>PIPEA M-->W: RETIRE: 0x9fa02118: 3c1cbfa0 lui$gp,$0,xbfa0
13872500 M000>>>PIPEA M-->W: RETIRE: 0x9fa0211c: 379c000c ori$gp,$gp,x000c
13877500 M000>>>PIPEA M-->W: RETIRE: 0x9fa02120: 8f9c0000 lw$gp,x0000($gp)
13917500 M000>>>PIPEA M-->W: RETIRE: 0x9fa02124: 00000000 sll$0,$0,x00

Byte Lanes 1111 Bus operations accessing a full word.

0001,0010,0011,
0100,1000,1100

Bus operations accessing bytes or half words.

Memory Cached or uncached transaction corresponding to
addresses in system memory.

ram Transaction mapping to a local D-RAM or I-RAM
memory.

rom Transaction mapping to a local IRAM memory when
using the lconfig option IRAM_IS_ROM=YES.

Status hit Indicates that the data requested by the instruction is
in the cache or that the instruction is performing an
uncached transaction.

miss The cache-line corresponding to the requested
address is not present in instruction or data cache.
For write transactions, the data is written to system
memory.

- Valid only for system bus transactions.
For write transactions: “-” always appears
For read transactions: “-” means data is invalid and
the processor disregards it.

rdy The data is valid and the LBC is reading or writing it

Data hexadecimal
number

Data on the bus.

TYPE LABEL DESCRIPTION

LEXRA, INC. CONFIDENTIAL 173

Lexra 6-Stage Products User’s Guide Revision 5.0

In the sample output below, note that pairs of instructions are grouped using
underscores ("_"). The output below shows program order, rather than one pipe
always first.

Dual Issue Processor:

11580000 M000>>>PipeB M-->W: NOTVLD
11580000 M000>>>PipeA M-->W: RETIRE:_0x00400004:_34210020 ori $at,$at,0x0020
11590000 M000>>>PipeA M-->W: DUAL RETIRE:0x00400008:ac3f0000

sw $ra,x0000($at)
11590000 M000>>>PipeB M-->W:DUAL RETIRE:0x0040000c:_240a0001

addiu$t2,$0,0x0001
11600000 M000>>>PipeB M-->W:RETIRE:0x00400010: 254a0001addiu $t2,$t2,0x0001
11600000 M000>>>PipeA M-->W:NOTVLD
11730000 M000>>>PipeB M-->W:NOTVLD
11730000 M000>>>PipeA M-->W:RETIRE:0x00400014:_254a0001addiu $t2,$t2,0x0001
11740000 M000>>>PipeB M-->W:DUAL RETIRE:0x00400018: 254a0001

addiu $t2,$t2,0x0001
11740000 M000>>>PipeA_M-->W:DUAL RETIRE:0x0040001c:_10000001

beq $0,$0,0x0001
11750000 M000>>>PipeA M-->W:SQUASH:0x00400020: 0002000d break $0,$0,$v0
11750000 M000>>>PipeB_M-->W:NOTVLD

The following table defines the labels used in both examples:

TYPE LABEL DESCRIPTION

Time decimal number The time stamp produced by the $time Verilog
system task.

ID Tag Identifies which processor is being traced in a
multiprocessor system. A multiprocessor system
requires TESTBED_ENV==EXAMPLE.

M000 Processor M00, thread 0.
(note: thread is always 0 in single thread processor).

M103 Processor M10, thread 3.

Pipeline Indicates which pileline is executing what instruction.
The "_" character denotes grouping with the previous
instruction (i.e. executed in parallel).

PipeA Executes load, store, cop0 and ALU opcodes.

PipeB Executes MULT, DIV and ALU opcodes.

Lexra 6-Stage Products User’s Guide Revision 5.0

174 LEXRA, INC. CONFIDENTIAL

+trace_exception +define+RTL_MON

The processor triggers this trace output when it takes an exception. The current
state of the COP0 registers are displayed in hexadecimal. In addition, a count of
all exceptions is displayed at the end of simulation.

6390000 M000>>>> XCPN 0xbfc00180 EPC:0x0040001c Cause:0x00000024
Status:0x00400000

Count of exceptions
Int ExcCode=00 BEV0= 0 BEV1= 0
Mod ExcCode=04 BEV0= 0 BEV1= 1
TLBL ExcCode=08 BEV0= 0 BEV1= 11
TLBS ExcCode=0c BEV0= 0 BEV1= 9
AdEL ExcCode=10 BEV0= 0 BEV1= 0

Code NOTVLD The indicated pipe does not contain a valid
instruction. Invalid instructions are generated by the
core whenever the code being executed dictates that
both pipes cannot execute in parallel because of
data dependencies, etc.

RETIRE The instruction in the indicated pipe completes while
there is an invalid instruction in the other pipe.

SQUASH The instruction in the indicated pipe is SQUASHed
while there is an invalid instruction in the other pipe.

DUAL RETIRE The instructions in both pipes complete successfully.

HALF RETIRE The indicated pipe has its instruction completed
while the other pipe incurs a "HALF SQUASH." The
indicated pipe carries the older instruction.

HALF SQUASH The indicated pipe has its instruction invalidated
("squashed") by an exception. The other pipe incurs
a "HALF RETIRE." The indicated pipe carries the
newer instruction.

DUAL SQUASH Both pipes have their current instruction invalidated
because an exception is taken by the older pipe.

Address hexadecimal
number

Instruction logical Address (Program Counter)

Data hexadecimal
number

Instruction data (opcode)

Instruction Instruction Disassembled instruction and operands

TYPE LABEL DESCRIPTION

LEXRA, INC. CONFIDENTIAL 175

Lexra 6-Stage Products User’s Guide Revision 5.0

AdES ExcCode=14 BEV0= 0 BEV1= 0
Sys ExcCode=20 BEV0= 0 BEV1= 0
Bp ExcCode=24 BEV0= 0 BEV1= 0
RI ExcCode=28 BEV0= 0 BEV1= 0
Ov ExcCode=30 BEV0= 0 BEV1= 27
TLBL ExcCode=08 UTL0= 0 UTL1= 0
TLBS ExcCode=0c UTL0= 0 UTL1= 0

+trace_regwrite +define+RTL_MON

Traces changes to register state used in combination with +trace_pipem,
provides one of most used features of a source code debugger.

M000>>> GPR 130 W1A $10 t2 wr 0x55555555
M000>>> GPR 131 W1A $20 s4 wr 0x00001001
M000>>> GPR 132 W1A $11 t3 wr 0xaaaaaaaa
M000>>> GPR 133 W1A $20 s4 wr 0x00001002
M000>>> GPR 134 W1A $12 t4 wr 0x00000000
M000>>> GPR 135 W1A $20 s4 wr 0x00001003
M000>>> GPR 136 W1A $13 t5 wr 0x00000000
M000>>> GPR 137 W1A $20 s4 wr 0x00001004
M000>>> GPR 138 W1A $10 t2 wr 0x55555555

The following table defines the labels used in the example.

TYPE LABEL DESCRIPTION

ID Tag Identifies which processor is being traced in a
multiprocessor system. A multiprocessor system
requires TESTBED_ENV==EXAMPLE.

M000 Processor M00, thread 0.
(note: thread is always 0 in single thread processor).

M103 Processor M10, thread 3.

GPR General Purpose Register

Port Activity W1A or
W2A

Write to port 1 or 2 from Leg A

Register Number hexadecimal Identifies the register number being addressed.

Register Name t2, s4, etc Identifies the register by its conventional mnemonic
name being accessed.

Operation wr write

Data hexadecimal write data.

Lexra 6-Stage Products User’s Guide Revision 5.0

176 LEXRA, INC. CONFIDENTIAL

+trace_memread

State of the memory model are traced with +trace_memread plus-arg.

M--->>> MEM 0x1fa02020 rd 0xad00000c
M--->>> MEM 0x1fa02024 rd 0xad000010
M--->>> MEM 0x1fa02028 rd 0xad000014
M--->>> MEM 0x1fa0202c rd 0x3c08bfa0

+trace_memwrite +define+RTL_MON

Changes in the state of the memory model are traced with +trace_memwrite
plus-arg.

M--->>> MEM 0x1fa00004 wr 0x9fa02000
M--->>> MEM 0x1fa00000 wr 0x00400000
M--->>> MEM 0x1fa00460 wr 0x00000010
M--->>> MEM 0x1fa0000c wr 0x00600000

+trace_lbus

Traces the LBUS activities including master and target devices, address, data
and commands

10640100 Bus0>>> LBUS SELSTALL
10645100 Bus0>>> LBUS LASTDATA Target = 0010 Data = 0x00000000
10800100 Bus0>>> LBUS ADDR Master = 0001 Addr = 0x1fa02120 Cmd = 0x30
10805100 Bus0>>> LBUS SELSTALL
10810100 Bus0>>> LBUS DATA Target = 0010 Data = 0x25080008
10815100 Bus0>>> LBUS DATA Target = 0010 Data = 0x3c08bfa0
10820100 Bus0>>> LBUS DATA Target = 0010 Data = 0x35080230
10825100 Bus0>>> LBUS LASTDATA Target = 0010 Data = 0xad000000
10840100 Bus0>>> LBUS ADDR Master = 0001 Addr = 0x1fa00030 Cmd = 0x4b

Lexra supports many types of traces. For a complete description of all available
traces, please see $LX_HOME/testbed/lmon.v.

LEXRA, INC. CONFIDENTIAL 177

Lexra 6-Stage Products User’s Guide Revision 5.0

10.6.1 Tracing Through Hierarchical References

To control hierarchical references, only Verilog macros can be used. Lexra has
defined a convention where several levels of references are allowed. These
options are mainly used with RTL netlists. Because synthesized gate level netlists
will not have the same name references as the RTL netlists, RTL_MON and
LOCAL_MON will not work in gate level simulation.

+define+LOCAL_MON

This symbol is added to the verilog compiler by default by rundvt in order to
allow a limited amount of peeking. Without LOCAL_MON, only the system bus
may be monitored. The testbed will attempt to peek into lx2 but not deeper. This
may be used with gate level netlists below lx2 level. However, tests may fail
when simulating with both behavioral and gate level netlists, especially critical
timing at the behavioral/gate boundaries.

+define+RTL_MON

RTL_MON permits any signal in the design to be examined below lx2 hierarchy.
Code can be seen where RTL_MON will enable hierarchical references in
$LX_HOME/testbed/lmonw.v

‘ifdef RTL_MON
wire [7:0] ProcNum = ‘Lx0Path CFG_PROCNUM;

‘else // not RTL_MON
wire [7:0] ProcNum = 8’h0;

‘endif

The different modes of hierarchical references are summarized in the
following table with the various rundvt options.

Allow Hierarchical
References

Add ‘-f gate.f’ to Verilog
Compiler

rundvt default yes no

add ‘-gates’ no yes

files with *hv,*vo,*vm no yes

CUSTOM_FILES=YES yes (default) yes

SIM_TECH=YES yes (default) yes

Add ‘-nopeeking’ no yes (default)

Add ‘+define+LOCAL_MON’ yes yes (default)

Lexra 6-Stage Products User’s Guide Revision 5.0

178 LEXRA, INC. CONFIDENTIAL

10.6.2 Sparse Memory Tracing

A 4GB system memory model, sparsememory.v is included in $LX_HOME/

testbed. The $LX_HOME/testbed/testbed.v loads an ASCII binary file
into the system memory for testing. The verilog macros below enable infor -
mational traces.

+define+SPARSEMEMORY_TRACE

The sparse memory model uses a single level hash to provide fast access to the
memory pages. The dump function will be invoked when the
SPARSEMEMORY_TRACE is defined. It will display the state of the hash. A linked
list of collision pool records backs up the hash.

Allocating page key=00001045 tag=40405400 page=00001f00
Allocating page key=00001046 tag=40405800 page=00002000
Allocating page key=00001047 tag=40405c00 page=00002100
Allocating page key=00001048 tag=40406000 page=00002200
Allocating page key=00001049 tag=40406400 page=00002300
Allocating page key=0000104a tag=40406800 page=00002400
Allocating page key=0000104b tag=40406c00 page=00002500
Allocating page key=0000104d tag=40407400 page=00002700

HASH[00001044] tag=40405000 page=00001e00 count= 354
HASH[00001045] tag=40405400 page=00001f00 count= 255
HASH[00001046] tag=40405800 page=00002000 count= 255
HASH[00001047] tag=40405c00 page=00002100 count= 255
HASH[00001048] tag=40406000 page=00002200 count= 388
HASH[00001049] tag=40406400 page=00002300 count= 354
HASH[0000104a] tag=40406800 page=00002400 count= 407
HASH[0000104b] tag=40406c00 page=00002500 count= 255

+define+SPARSEMEMORY_TRACE_HIT

Trace read and write hits to hash.

Hit page key=0000047e tag=405ffc00 page=00003400
Hit page key=00000015 tag=1c000000 page=00003600
Hit page key=00000015 tag=1c000000 page=00003600
Hit page key=0000047e tag=405ffc00 page=00003400
Hit page key=0000047e tag=405ffc00 page=00003400
Hit page key=00000015 tag=1c000000 page=00003600
Hit page key=00000015 tag=1c000000 page=00003600
Hit page key=0000047e tag=405ffc00 page=00003400

LEXRA, INC. CONFIDENTIAL 179

Lexra 6-Stage Products User’s Guide Revision 5.0

+define+SPARSEMEMORY_TRACE_VERBOSE

Trace every read and write accesses to the system memory model.

get_memory(1fa00120) memory[00000748]=00000000
get_memory(1fa000a4) memory[00000729]=00000000
get_memory(1fa00124) memory[00000749]=00000000
get_memory(1fa000a8) memory[0000072a]=00000000
get_memory(1fa00128) memory[0000074a]=00000000
get_memory(1fa000ac) memory[0000072b]=00000000
get_memory(1fa0012c) memory[0000074b]=00000000
get_memory(1fa00230) memory[0000078c]=00000000

Lexra 6-Stage Products User’s Guide Revision 5.0

180 LEXRA, INC. CONFIDENTIAL

LEXRA, INC. CONFIDENTIAL 181

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 11

Synthesizing the Lexra CPU

11.1 Overview

The Lexra database comes with a complete synthesis environment. To setup this
environment for your design only a few files need to be modified. Example
modifications are: library name and location, cpu clock speed, RAM timing
information. We provide default values for several parameters and you can
change them to gain more control over the provided synthesis script.
Section 11.2, Setting up the Synthesis Environment explains the required and
optional setups.

Section 11.3, Running Synthesis explains how to synthesize the database and
Section 11.4, Synthesis Output Files explains the output files generated by the
synthesis session.

You can configure the RTL code to synthesize to gates at the push of a button.
This provides high-quality synthesis results. There are back-end optimizations
that are not practical to automate. Consequently, Lexra's synthesis procedure is
not a step-by-step set of instructions to get from RTL to silicon. Section 11.5,
Considerations discusses these topics.

The final Section 11.6, Structure of the Synthesis Environment goes into more
detail about how the Lexra Makefile driven synthesis environment works.

11.2 Setting up the Synthesis Environment

This discusses the three files you need to modify to customize your environment:

Chapter

11

Lexra 6-Stage Products User’s Guide Revision 5.0

182 LEXRA, INC. CONFIDENTIAL

• .synopsys_dc.setup

• dont_use.scr

• techvars.scr

11.2.1 .synopsys_dc.setup

You need to customize the file $LX_HOME/user/tech/
.synopsys_dc.setup which is created after lconfig is run.

This file specifies the Synopsys library file(s) to use and the search path to the
file(s). Be sure to add RAM libraries to your link_library list.

The tech directory as shown above is a link created by lconfig. It points to
the directory specified by the following variable in the lconfig form.

TECHNOLOGY = "CUSTOM"

Usually TECHNOLOGY will be set to CUSTOM and thus the tech directory will
point to the custom directory. However, if synthesis to multiple technologies is
required using the same Lexra database, modifying the TECHNOLOGY variable
to CUSTOM_<my_name> and re-running lconfig will relink the tech directory
to the new directory CUSTOM_<my_name>. This helps in managing the
database when synthesizing to multiple technologies.

You can also use this file to set default values on dc_shell variables for all
blocks in the RTL database. For example, you can specify bus_naming_style
or define_name_rules in this file. All dc_shell scripts in the environment
use this file.

note: The synthesis methodology writes out a netlist for each <block> at each
level of the hierarchy and reads that netlist when synthesizing the next level of the
hierarchy. This requires that the bus naming style be consistent between the
RTL and the synthesized netlist. Therefore, we recommend that you do not
change dc_shell variables such as bus_naming_style or
define_name_rules. If you change them, you must maintain the consistency
described above or the hierarchical make process will not be successful.

LEXRA, INC. CONFIDENTIAL 183

Lexra 6-Stage Products User’s Guide Revision 5.0

Parameters to Set

11.2.2 dont_use.scr

You may customize the file $LX_HOME/user/tech/dont_use.scr. This file
allows you specify cells in the synthesis library that the synthesis tool may not
use.

Do not remove these two set_dont_use statements in the dont_use.scr file:

set_dont_use { standard.sldb/DW01_add/rpl, standard.sldb/DW01_addsub/rpl, standard.sldb/
DW01_sub/rpl }

set_dont_use { standard.sldb/DW01_inc/rpl, standard.sldb/DW01_incdec/rpl, standard.sldb/
DW01_dec/rpl }

These commands prohibit Design Compiler from using DesignWare ripple-carry
implementations of adders, subtractors, addsubs, incrementers, decrementers
and incdecs. Many versions of Design Compiler have trouble swapping out such
cells when a faster implementation is needed to meet timing constraints.
Therefore, it is often difficult to get good timing results without prohibiting these
DesignWare parts.

When SCAN_INSERT=NO, the synthesis tool may take advantage of scan flops
to implement logic that requires a mux followed by a non-scan flop. If your goal is
to insert scan post-synthesis, this will cause a problem. One way to avoid the
problem in this case is to set_don’t_use on scan flops. This can be done
using the following example as a guide:

if (SCAN ==0) {
set_dont_use { TECHLIB + “/SDFFHQX1” }
set_dont_use { TECHLIB + “/SDFFHQX2” }
set_dont_use { TECHLIB + “/SDFFHQX4” }

}

Variable Required/optional Example

link_library required link_library = { "*" , tech.db}

target_library required target_library = { tech.db }

search_path required search_path = search_path + "path_to_library_file"

symbol_library optional symbol_library = tech.sdb

Lexra 6-Stage Products User’s Guide Revision 5.0

184 LEXRA, INC. CONFIDENTIAL

11.2.3 techvars.scr

You must customize the file $LX_HOME/user/tech/techvars.scr.

The file techvars.scr offers you many variables for controlling the synthesis
environment. You need to set some variables, but frequently the default settings
are the right ones.

Below are tables of available variables. The first table displays the variables you
must customize to get the synthesis scripts to run without errors. The second
table displays the variables whose default values the synthesis script can run
without errors.

Variables Needing Customizing

Variable Function

TECHLIB Synopsys technology library name (not a file name)

BCOPCOND best case operating condition for checking hold time
violations (NOT USED at this time)

WCOPCOND worst case operating condition in TECHLIB for

optimizing setup violations

CLKPERIOD, BUSCLKPERIOD,

JTAGCLKPERIOD1

Sysclk, busclk and jtagclk clock period

DCELL basic driving cell, like size 1 or size 2 inverter for
calculating standard drive of input signal.

DCELLPIN output pin on DCELL

MAXAREASCALE variable for scaling the Synopsys max_area limit from
the original reported area

MAXFANOUTV2 limits fanout on ports of each module (is a floating point
number which is an integral multiple of 1.0)

RAM_DCACHE_DATA_INDEX_SETUP3 setup time from positive edge of clock (sysclk) for
address bus on DCACHE

RAM_DCACHE_DATA_WE_SETUP3 setup time from positive edge of clock (sysclk) for write
enable on DCACHE

RAM_DCACHE_DATA_WR_SETUP3 setup time from positive edge of clock (sysclk) for write
data bus on DCACHE

RAM_DCACHE_DATA_RD_DELAY3 read access delay from positive edge of clock (sysclk) to
valid output on memory for DCACHE

LEXRA, INC. CONFIDENTIAL 185

Lexra 6-Stage Products User’s Guide Revision 5.0

There are six possible types of RAMs and one type of ROM in the Lexra CPU
core. Choosing a 2-way set associative instruction cache will cause multiple
instances of instruction cache data and tag RAMs.

RAM_DCACHE_DATA_RE_SETUP3 setup time from positive edge of clock (sysclk) for read
enable

RAM_DCACHE_DATA_CS_SETUP3 setup time from positive edge of clock (sysclk) for chip
select

ROM_IROM_INST_INDEX_SETUP setup time from positive edge of clock (sysclk) for
address bus on IROM

ROM_IROM_INST_RE_SETUP setup time from positive edge of clock (sysclk) for read
enable

ROM_IROM_INST_CS_SETUP setup time from positive edge of clock (sysclk) for chip
select

ROM_IROM_INST_RD_DELAY read access delay from positive edge of clock (sysclk) to
valid output on IROM

1 CLKPERIOD is the system clock period, BUSCLKPERIOD is the bus clock period, and
JTAGCLKPERIOD is the JTAG clock period. The Lexra LBC has an optional asynchronous
interface that operates correctly with any bus clock frequency relative to system clock fre-
quency. To make the synthesis tool work effectively, set these variables so that their ratio is
a small integer, for example BUSCLKPERIOD/CLKPERIOD = 1, 2, 4, 8.

2 Many synthesis libraries model fanout restrictions poorly. For example, they may model
fanout for input pins exactly as they do capacitance or for output pins exactly as they do
drive strength. The synthesis tool, using only this information, provides poor ability to con-
trol fanout. The Lexra synthesis environment therefore, puts a default max_fanout attribute
on all cells' output pins. Specifically, executing the lib_fanout.scr script puts a default
max_fanout attribute on all library cells' output pins. The default is MAXFANOUTV. This
means that no cell can drive a node with a fanout_load exceeding MAXFANOUTV, without
causing a max_fanout design rule violation. Thus, the MAXFANOUTV variable provides an
efficient way for you to control the fanout in the design.

3 These variables describe timing characteristics of the memories for the synthesis tool. This
table shows them for the Dcache data RAM only. The techvars.scr file provides the
same parameters for the Instruction cache store, Instruction cache tag, Data Memory
(DMEM, no tags) and Instruction memory (IMEM, no tags). Each type of RAM has six
parameters. Their naming style is consistent with those the Dcache has in the table.

DCACHE_DATA

DCACHE_TAG

DRAM_DATA

ICACHE_INST

ICACHE_TAG

IRAM_INST

IROM_INST

Variable Function

Lexra 6-Stage Products User’s Guide Revision 5.0

186 LEXRA, INC. CONFIDENTIAL

Each RAM has six timing parameters.

The IROM has four timing parameters.

The techvars.scr variable names are the concatenation of the string:
"RAM_" (or “ROM_”), the memory name, and the parameter

name:

Variables Not Needing Customizing

INDEX_SETUP

WE_SETUP

RE_SETUP

CS_SETUP

WR_SETUP

RD_DELAY

INDEX_SETUP

RE_SETUP

CS_SETUP

RD_DELAY

RAM_DCACHE_DATA_INDEX_SETUP

RAM_DCACHE_DATA_WE_SETUP

RAM_DCACHE_DATA_RE_SETUP

RAM_DCACHE_DATA_CS_SETUP

RAM_DCACHE_DATA_WR_SETUP

RAM_DCACHE_DATA_RD_DELAY

Variable Function

TECHLIB2 synopsys technology library name for a second library (optional)

TECHNAME local library name useful for customizing scripts, not in use

RPTCLKPERIOD,
RPTBUSCLKPERIOD,

RPTJTAGCLKPERIOD1

report clock periods. report timing uses these for system clock, bus
clock and jtag clock

RPTMAX argument to Synopsys command report_timing -max_path

RPTWORST argument to Synopsys command report_timing -worst

LEXRA, INC. CONFIDENTIAL 187

Lexra 6-Stage Products User’s Guide Revision 5.0

IODELAYSCALE2 scaling factor for input_delay and output_delay values. Do

not modify. Should be CLKPERIOD/10.

LXDEBUG set to 1 for verbose logging in synthesis log file

CLKMUNCERT,
BUSCLKMUNCERT,
JTAGCLKMUNCERT

minus uncertainty applied to system clock, bus clock and jtag clock
for modeling clock tree effects before layout (computing clock edge
times). Use minus uncertainty when checking setup (maximum
path) delays. It effectively shifts the clock edge to the left, making
the clock edge earlier. Larger uncertainty implies tighter setup
constraints.

CLKPUNCERT,
BUSCLKPUNCERT,
JTAGCLKPUNCERT

plus uncertainty applied to system clock, bus clock and jtag clock
for modeling of clock tree effects before layout (computing clock
edge times). Use plus uncertainty when checking hold (minimum
path) delays. It shifts the clock edge to the right, making it later.
Larger uncertainty implies tighter hold constraints.

RPTCLKMUNCERT,
RPTBUSCLKMUNCERT,
RPTJTAGCLKMUNCERT

same as CLKMUNCERT, BUSCLKMUNCERT, and

JTAGCLKMUNCERT but for the report clocks

RPTCLKPUNCERT,
RPTBUSCLKPUNCERT,
RPTJTAGCLKPUNCERT

same as CLKPUNCERT, BUSCLKPUNCERT, and

JTAGCLKPUNCERT but for the report clocks.

CLKHPERIOD,
BUSCLKHPERIOD,
JTAGCLKHPERIOD,
RPTCLKHPERIOD,
RPTBUSCLKHPERIOD,
RPTJTAGCLKHPERIOD

half period for sysclk, busclk, jtagclk and corresponding report
clocks. Default is 50% duty cycle.

CRITRANGE critical range for compile command. Specifies a margin of delay for
path groups in optimization. A critical range of 0.0 means that only
the most critical paths (the ones with the worst violation) are
optimized. For a nonzero critical range, near-critical paths within
that amount of the worst path are also optimized if possible.
Default: critical range is 10% of the clock period. Set to zero or
small portion of clock period time since it has a large impact on
runtimes.

1 The synthesis tool frequently produces better timing results when the timing is overcon-
strained. Accurate static timing analysis requires the actual clock period and clock uncer-
tainty. Currently, the positive uncertainty is increased to overconstrain the synthesis tool.
For each clock, there is a clock period (CLKPERIOD) and a reporting clock period (RPT-
CLKPERIOD). By default, all reporting clock periods are equal to the actual clock period.

2 Constraints are based on a 10ns clock. The file constraints.template contains this con-
straint data on each port. These constraints are scaled linearly for different clock frequen-
cies in the constraint files (io_*.con). The scale factor by default is IODELAYSCALE =
CLKPERIOD/10.

Variable Function

Lexra 6-Stage Products User’s Guide Revision 5.0

188 LEXRA, INC. CONFIDENTIAL

11.2.4 Using Pre-defined Technologies

If you use one of the technologies Lexra has already defined, setting up the
synthesis environment requires only the following steps.

1. Set the lconfig option TECHNOLOGY and run lconfig on
the edited form.

2. Customize the .synopsys_dc.setup, dont_use.scr, and
techvars.scr files. They are in the $LX_HOME/user/tech
directory.

11.2.5 Synthesis Wire Load Models

Wire load models are controlled by the synthesis variables SYNWLM, DPWLM
and DWWLM found in techvars.scr and <module>.scr.template files.
Setting these variables to “auto” causes the synthesis tool to automatically select
the Synopsys library specific wire load model for the module being synthesized
based on the wire_load_selection function in the library.

Setting the three variables to “modulewlm” will allow the use of a unique wire
load model for each module in the design.

note: A “module” signifies one of the major modules in the Lexra RTL hierarchy. These modules,
many times, will contain submodules.

When using “modulewlm”, the name of the wireload model must be named
<module>_wire.lib. This option allows you to use layout tool generated
wireload models to achieve better synthesis results. You will need to create a
<module>_wire.lib file for each synthesized module. That is, there is a
directory $LX_HOME/syn/<module> for each major module in the Lexra RTL
hierarchy. If using “modulewlm”, each directory must contain a file
<module>_wire.lib. You can confirm which wire load models were used in
synthesis by looking at the timing_real.rpt file.

Setting SYNWLM, DPWLM and DWWLM to “<model name>” allows the use of
a single wireload model for all modules. This will look for the file
<model_name>_wire.lib.

note: Do not change SYNWLM in the following four files: lx0.scr.template,
lx0c.scr.template, lx1.scr.template, lx2.scr.template. SYNWLM must be set here
to “zero” (a Lexra included wireload model) because the routing parasitics normally handled by the
wire load model are included in the constraints file io_rpt.con for these modules.

LEXRA, INC. CONFIDENTIAL 189

Lexra 6-Stage Products User’s Guide Revision 5.0

11.3 Running Synthesis

To synthesize the entire Lexra CPU:

• set up the synthesis environment by updating the following three
files as described in the previous section:

.synopsys_dc.setup
dont_use.scr
techvars.scr

• Verify your setup by synthesizing a small block:

cd $LX_HOME/syn/<block_name>/ ; make

for example:

cd $LX_HOME/syn/reset_dist/ ; make

• Synthesize Lexra Processor at either the LX1 or LX2 level of the
hierarchy:

cd $LX_HOME/syn/lx2; make

11.4 Synthesis Output Files

Each Synopsys script writes out the following files:

<block>.hv hierarchical Verilog netlist

<block>.db synthesized database in Synopsys database format

timing_real.rpt timing report (using real constraints) using RPTCLKPERIOD and
RPTBUSCLKPERIOD

constraint_real.rpt constraint violation report (using real/report constraints)

design.rpt check_design output

port.rpt verbose information on port constraints

pin_timing.rpt timing report on I/O ports only

<block>.autoxp scan path report (only when SCAN_INSERT=YES)

<block>.tpf test protocol file (only when SCAN_INSERT=YES)

test.rpt output of check_test (only when SCAN_INSERT=YES)

Lexra 6-Stage Products User’s Guide Revision 5.0

190 LEXRA, INC. CONFIDENTIAL

11.5 Considerations

11.5.1 Synthesizing Clock Trees

During initial synthesis treat clocks as ideal and don’t try to force synthesis to
create the clock trees for you. Having synthesis create the clock buffer tree
produces poor results since the tool has no layout information to work with.
Instead, use back-end tools to create clock trees based on layout and timing
constraints.

Lexra's synthesis scripts model the clock distribution tree as if it were driven by an
ideal driver (infinite drive strength). The synthesis environment does provide
parameters for modeling clock uncertainty in terms of plus and minus uncertainty
of the arrival of the clock edge. Use these parameters (see Section 11.2.3,
techvars.scr) with the Synopsys command set_clock_skew in the syn/
opt.scr file as follows:

set_clock_skew -ideal \
-delay 0 \
-minus_uncertainty CLKMUNCERT \
-plus_uncertainty CLKPUNCERT \
find(clock, Clock)

We recommend that you not modify the default values, which are percentages of
the actual clock period.

11.5.2 Back-end and IPO Considerations

Your first synthesis ideally results in a netlist without any timing or design rule
violations. The next design phase is to floorplan and/or place and route the netlist.
After this step, your design is likely to have timing and/or design rule violations
because the layout tool provides you with actual wire parasitic resistance and
capacitance.

You have to resynthesize the netlist incrementally, using back-annotated data
from the back-end flow unless the violations are acceptable. This kind of iteration,
performing incremental re-synthesis based on back-annotated data, is often
called IPO (in-place optimization) in the synthesis level or ECO (engineering
change order) in the layout level.

LEXRA, INC. CONFIDENTIAL 191

Lexra 6-Stage Products User’s Guide Revision 5.0

It is very complicated to create a generic, automated and still efficient IPO or ECO
synthesis flow and it is beyond the scope of the synthesis environment provided
by Lexra. Some consideration in the initial synthesis may help later, when you do
ECO or IPO types of optimizations.

Be conservative but not too limited when specifying constraints.

Consider disabling (set_dont_use) strong drive cells in the synthesis so you
have them available for IPO optimization.

If the vendor's technology library has poor wire-load models, consider generating
custom wire-load models from a floorplan and place and route. Then re-
synthesize from scratch using the newly generated wire-load models.

Model clock tree uncertainties as accurately as possible in initial synthesis but
use set_clock_skew -propagated_delay with back-annotated SDF data
when doing IPO or ECO types of optimization.

11.5.3 Reordering Scan Chains

Lexra's synthesis environment inserts and connects scan chains if you set the
SCAN_INSERT option. You usually reorder the scan chains in the back-end
based on layout considerations.

Scan chain reordering as well as the IPO/ECO loop outlined in the previous
section is hard to make generic, automated, and still efficient. It is beyond the
scope of Lexra's synthesis environment. You must recreate ATPG vectors if you
re-optimize the scan chains.

11.5.4 Library Recommendations

The Lexra CPU is a generic, technology independent RTL design that does not
rely on any specific library components.

For optimal synthesis results, we recommend that the library contains

• cells with many different drive strengths per logic function

• scan flip-flops

• a rich selection of wire-load tables

• several different operating conditions or different library files for
different operation conditions (i.e typical, slow, fast)

Lexra 6-Stage Products User’s Guide Revision 5.0

192 LEXRA, INC. CONFIDENTIAL

11.6 Structure of the Synthesis Environment

When you run lconfig, it reads your form and sets up your environment for
both simulation and synthesis. The synthesis files reside in the $LX_HOME/syn/
<block> directories after lconfig is run. The lconfig script figures out if you
have technology specific files for synthesis (for example RAM wrappers, sleep
clock buffers, etc) based on finding *.v files in the $LX_HOME/*/<tech>
directories. If these files exist, lconfig creates appropriate links to them from
the appropriate syn directory.

When it locates your technology specific file, lconfig displays the message

using technology specific file <pathname> for synthesis

For example, if TECHNOLOGY is set to CUSTOM and you are using a 1K
DCACHE, you create the RAM wrapper $LX_HOME/chip/custom/
sram_dc_data_256x32.v. The lconfig script then creates a link in the
$LX_HOME/syn/lx2 directory:

sram_dc_data_256x32.v -> ../../chip/custom/sram_dc_data_256x32.v

When you synthesize the lx2 module, the synthesis script reads the linked file.
For certain modules, RAM wrappers for example, lconfig issues an error
message if it is unable to locate the technology-specific file to use for synthesis.

Prior to running lconfig, there are no syn/<block> directories. The lconfig
script creates the syn/<block> directories and copies the <block>.files &
<block>.scr.template files from syn/syntrol to them.

The lconfig script reads the <block>.files file and your form and creates the
following files in each syn/<block> directory that needs to be synthesized for
your configuration.

The lconfig script then creates a makefile in the unused syn/<block>

Makefile

.synopsys_dc.setup link to technology specific file

chk_logs link to script to detect problems in Synopsys log file

include link to include directory

<blocks>_subs.scr list of Verilog submodules read by synthesis script

LEXRA, INC. CONFIDENTIAL 193

Lexra 6-Stage Products User’s Guide Revision 5.0

directories so if you stumble into one of these by accident, the makefile tells
you that this configuration doesn't use that <block>.

Constraint information for each block is located in the file
constraints.template. The lconfig script and the synthesis makefile use
the information in constraints.template to create the module level
constraint files requrired for synthesis (syn/<module>/io_synth.con).

In addition to set_input_delay and set_output_delay constraints and
set_false_path timing exceptions, the module level constraint files include
set_load commands to add a load attribute to a specified value on all output
ports and internal nets that connect to output ports of synthesized sub-blocks.
There are five load values (OUT_LOAD_W1, ... OUT_LOAD_W5) specified in
the /$LX_HOME/user/tech/techvars.scr file. For example:

OUT_LOAD_W1 = 0.01 /* load assigned by mk_syn_con, smallest connection */
OUT_LOAD_W2 = 0.02 /* load assigned by mk_syn_con,typical nearby connection*/
OUT_LOAD_W3 = 0.05 /* load assigned by mk_syn_con,in-between-ish connection*/
OUT_LOAD_W4 = 0.10 /* load assigned by mk_syn_con, typical far connection */
OUT_LOAD_W5 = 0.20 /* load assigned by mk_syn_con, biggest connection */

The build_constraints script called by the synthesis makefile checks the
blocks in the hierarchy to ensure that the constraints are consistent between
levels of hierarchy.

Each Makefile does the following:

• change directory to ../syn/syntrol and calls the local
makefile with an argument to provide the desired functionality.

This functionality includes commands that:

• run build_constraints to create a <block>.data file
containing the I/O timing.

• run mk_syn_con on the <block>.data file to get
io_{synth,rpt}.con synthesis constraint files

• runs vpp on the <block>.v file to generate a local <block>.v file
without any ifdef logic (since the synthesis tool may not be able to
parse this)

Lexra 6-Stage Products User’s Guide Revision 5.0

194 LEXRA, INC. CONFIDENTIAL

• for subblocks not synthesized separately, runs vpp to generate a
local <subblock>.v file

• if the <block>.scr.template file exists, runs vpp to create the
configuration-specific <block>.scr synthesis script. The
<block>.scr file sets some variables and includes other synthesis
command scripts.

• runs dc_shell on the <block>.scr file and write the results to
the screen and to the <block>.scr.log file.

• runs the script chk_logs after the synthesis job is complete and
writes potential problems to the screen and to chk_logs.log.

To get started with synthesis after your lconfig form is complete, run lconfig
and try synthesizing a small block:

cd $LX_HOME/syn/reset_dist
make

If you don't have any problems, you can try synthesizing a high-level block:

cd $LX_HOME/syn/lx2
make

You can run make -n to see what commands make wants to run without
executing them, or you can run make -nd to see explanations as well.

Most of the targets in the makefiles depend on syn/syntrol/<block>.vh that
are written by lconfig. Therefore when you modify a form and re-run lconfig,
the makefile will know that it only has to update blocks where the configuration
has changed.

LEXRA, INC. CONFIDENTIAL 195

Lexra 6-Stage Products User’s Guide Revision 5.0

Chapter 12

Simulation Guidelines
There are no special simulation requirements for Lexra’s processors. The RTL
code uses standard coding techniques and single edge clocked flip flops.
Engineers have simulated synthesized gate level netlists with numerous third
party libraries, for example Artisan TSMC 0.25µm, 0.18µm and 0.13µm, Aspec
IBM 0.25µm, Faraday UMC 0.25µm, Nurlogic IBM 0.25µm, and
STMicroelectronics 0.25µm.

Nevertheless, this chapter offers several useful notes on simulation issues users
may encounter.

12.1 Verilog

The syntax of Verilog options may differ between each Verilog simulator. Verilog-
XL, NC-Verilog and VCS all accept Verilog simulation options using the same
syntax.

12.1.1 Verilog Macro Definition on Simulator Command Line

If the user wanted to define a Verilog macro for use by all Verilog files then the
following syntax would be used to define a macro call EXAMPLE.

Command line syntax: +define+EXAMPLE

Verilog usage:

`ifdef EXAMPLE
// Conditionally enabled code at compile time
`endif

Chapter

12

Lexra 6-Stage Products User’s Guide Revision 5.0

196 LEXRA, INC. CONFIDENTIAL

12.1.2 Verilog System Function $test$plusargs

The $test$plusargs function looks for the existence of a user defined plusarg at
runtime.

Command line syntax: +example

Verilog usage:

if ($test$plusargs("example"))
begin
// Conditionally enabled code at runtime
end

12.1.3 Verilog Simulator Specific Options

For more information and use of these options refer to the simulator users guide.
A common example is the -RI option in VCS:

rundvt -RI -from_regression Logical.s

The compiler option automatically starts the Virsim wave form view and graphical
simulation control following a successful Verilog compilation.

12.2 RAM Models

The RAM behavioral models shipped with Lexra’s processor include event filters
for eliminating the race conditions. These conditions can result when simulating
the processor gate level netlists with RAM behavioral models. Be aware of the
potential for race conditions when simulating with RAM behavioral models not
supplied by Lexra. See the information provided in the Lexra behavioral RAMs
found in the $LX_HOME/chip directory.

There is a wide range of quality across library vendors' structural RAM models.
Some don't support back annotation with delays from SDF. Others can't turn off
post layout timing. Lexra has experienced numerous difficulties getting the
structural models integrated into the simulation environment. Therefore, it is
recommended to test the vendors' RAM models as early as possible. The ram
wrapper for the vendor rams should be pin compatible with the
tsyncram_example model that lconfig generates. The model is found in
$LX_HOME/chip/custom directory after running lconfig.

LEXRA, INC. CONFIDENTIAL 197

Lexra 6-Stage Products User’s Guide Revision 5.0

When connecting vendor specific ram models to the Lexra processor, be careful
of uninitialized contents, X’s since they can cause problems in simulation. In the
Lexra simulation environment, these problems can be diagnosed pretty quickly
because it has checkers to warn the user that something in the RAM interface is
X. See Section 4.4, Using Library Vendors' RAM Models for more details.

12.3 Reset

When simulating the core outside of the Lexra regression environment, ensure
that the reset signal duration is at least ten times longer than the system clock or
bus clock period. This allows the processor to exit reset properly. While the
processor and LBC are held in reset, the LBUS may be used by other peripheral

such as I2C loading bootstrap code into sdram.

The normal boot sequence occurs after reset is de-asserted. If there are caches,
the cache controllers initialize the tags for ICACHE and DCACHE. This takes one
cycle per cache line. The cache with the largest number of lines determines the
number of cycles since ICACHE and DCACHE tags are initialized in parallel. The
tag initialization is completed before the first instruction is fetched. Additional
cycles are required for the instruction request to propagate to LBUS. Therefore, it
will take the largest of number of DCACHE lines or ICACHE lines plus some
additional cycles before the first instruction fetch activity is seen on LBUS.

The first instruction fetch for normal operation begins at the reset vector
0xBFC0_0000. This location usually contains the starting address of the user’s
reset routine or bootup code. The boot code can copy another program or RTOS
to memory. After it finishes copying to memory, the program can jump to the new
program in memory.

12.4 Testbed Models

All of the testbed modules Lexra supplies sample their inputs on the rising edge of
the clock and update their outputs on the falling edge of the clock. This avoids
potential race conditions between the processor and the testbed, even when the
processor is simulated at the gate level. It is recommended that any new testbed
modules the user creates should follow this approach. This will also make gate
simulations with timing probably fail if tested at speed.

Lexra 6-Stage Products User’s Guide Revision 5.0

198 LEXRA, INC. CONFIDENTIAL

12.5 Libraries

It is recommended that the user follows the library vendors' simulation guidelines.
Add any simulator command-line arguments recommended by the library vendor
to the technology specific gate file. Running rundvt -gates adds ‘-f /user/
custom/gate.f’ to the simulator command line.

12.6 Gate Level Simulation

It is strongly recommend that simulation with post layout timing and gate level
netlist are performed. They should pass the regression tests. Although, the entire
regression suite does not have to be run. A subset of the regression testlist may
be specified by using -from and -to rundvt options. See 10.3.2, Advanced
Options.

Do not run gate level simulation at high frequencies (e.g. too close to the STA
verified speed) since the gate level simulation models and timings are not exactly
the same as the STA models. Otherwise, critical timing on a behavioral/gate
boundary will cause simulation to fail.

There are several steps to take when using rundvt to run regression testing on
the synthesized gate level design. In the file $LX_HOME/user/tech/gate.f,
ensure the appropriate verilog files are present including technology specific rams
where applicable. For example in gate.f,

-v library/tsmc/artisan/C018/aci/sc/verilog/tsmc18_lxr_udp_dff.v
-v $LX_HOME/chip/custom/RA1SH_512x20.v
+ notimingchecks
+ nospecify

By default, in the way the netlists are setup, the synthesized netlists entered on
the command line will override the “.v” files since the “.v” files are treated as
library files. To ensure that no RTL models are used in the gate level simulation,
comment out the lx0, lx0c, lx1 and lx2 inpfiles in $LX_HOME/regression/
vcs.inpfiles. For example in vcs.inpfiles,

-f board.inpfiles
-f chip.inpfiles
//-f lx0.inpfiles
//-f lx0c.inpfiles
//-f lx1.inpfiles
//-f lx2.inpfiles
-f tm_lbus.inpfiles

LEXRA, INC. CONFIDENTIAL 199

Lexra 6-Stage Products User’s Guide Revision 5.0

-f testbed.inpfiles
-f system.inpfiles

To run the regression testing on gate level netlist, use -gates option which will
include $LX_HOME/user/custom/gate.f for ASIC cell libraries and -
nopeeking option to disable hierarchical references in the testbed.

rundvt -gates -nopeeking <your_path/synthesized_netlist> <test>

12.6.1 Back Annotation

Verilog simulators support SDF for timing back annotation. To run the gate level
simulation with real annotated timings in Lexra’s testbed environment, there are
several additional steps that must be taken. Verilog simulators do not support
DSPF.

In the file $LX_HOME/user/tech/gate.f, comment out the last two lines so
the simulator can back-annotate the timing and do timing checks (e.g. setup &
hold).

-v library/tsmc/artisan/C018/aci/sc/verilog/tsmc18_lxr_udp_dff.v
-v $LX_HOME/chip/custom/RA1SH_512x20.v
//+notimingchecks
//+nospecify

In the file $LX_HOME/system/control.v, the following needs to be fixed.

1) SDF file name
2) top-level module hierarchical reference (the level at which SDF is

annotated)
3) log file name

Make sure the SDF file is in the $LX_HOME/regression directory.

For VCS:

% cd $LX_HOME/regression

% rundvt -gates [options] system/control.v +compsdf +maxdelays
+sdfverbose +neg_tchk

Lexra 6-Stage Products User’s Guide Revision 5.0

200 LEXRA, INC. CONFIDENTIAL

VCS will have a top level module control in addition to the normal topsys and
testbed. +compsdf tells VCS to use compiled SDF. If +compsdf is not used
then VCS will need an additional file sdf.tab. The file sdf.tab is not recommended
because it is difficult to create and causes VCS to run slower. +maxdelays tells
VCS to use the MAX delays in the SDF file. Other options are +typdelays or
+mindelays. +neg_tchk depends on the specific SDF or library.

For Verilog-XL:

The +compsdf argument is not needed because Verilog-XL is interpreted.
Verilog-XL executable must be compiled with the SDF annotator included. It does
not come this way on the installation CD from Cadence. However, most sites
have built it this way.

Check the log file to make sure the annotation takes place. The biggest source of
errors is the hierarchical reference in $LX_HOME/system/control.v. Refer to
Verilog-XL or VirSim for the correct reference. For example, to back annotate an
lx1 SDF file, the control file is modified as shown below.

**************************** control.v *******************************
module control;
initial
begin

$display ("Annotating topsys.lx_base.lx2.lx1 using %s",
("+mindelays":"+typdelays":"+maxdelays"));

$sdf_annotate("lx1.sdf",topsys.lx_base.lx2.lx1, , "lx1_sdf.log",
"TOOL_CONTROL", ,);

end
endmodule

**************************** control.v *******************************

To simulate "at speed", modify $LX_HOME/include/lxr_symbols.vh.

For example,

`define SYSCLK_PERIOD 8 (8ns clock period = 125MHz)
(the default is SYSCLK_PERIOD 50 => 50ns period = 20MHz).

LEXRA, INC. CONFIDENTIAL 201

Lexra 6-Stage Products User’s Guide Revision 5.0

12.7 Asynchronous-mode LBC

When using the LBC in asynchronous mode, simulating at the gate-level with
post layout timing annotation and synchronizing flip-flops in the LBC generates
setup time violations. When a timing violation occurs, most flip flop models
produce unknown values, which corrupt the simulation. This is unavoidable
because of the asynchronous relationship between the system clock and the bus
clock. This problem can be neutralized by copying the flip flop model to a new
cell, disabling the unknown value generated on a timing violation, and replacing
the synchronizing instances with the new cell.

12.8 Runtime Limitations

When running regression tests, run only one simulation at a time per regression
directory.

Do not rerun lconfig during a simulation. Otherwise, the simulation may fail since
Rundvt may recompile the models to run certain tests. For simultaneous
simulations, create a separate directory for each simulation run.

Lconfig may report synthesis setup errors if the technology files have not been
completely setup, but RTL simulation may still work.

Lexra 6-Stage Products User’s Guide Revision 5.0

202 LEXRA, INC. CONFIDENTIAL

	Lexra Development Environment
	1.1 Overview
	1.2 RTL Design Database Overview
	1.3 Requirements for the RTL Design Database
	1.4 Installing the RTL Design Database
	1.5 Configuring for PERL
	1.6 Running Lconfig
	1.7 Installing the LSDK
	1.8 Running Rundvt for the First Time
	1.9 Understanding the RTL Design Database File Organization
	1.10 Customer Configurations

	Using Lconfig
	2.1 Overview
	2.2 When to Execute Lconfig
	2.3 Running Lconfig
	2.4 Lconfig Forms
	2.5 Forms Supplied by Lexra
	2.6 Files Produced by Lconfig
	2.6.1 lxr_symbols.vh
	2.6.2 chip/sram_<type>_<data_type>_<depth>x<width>.v
	2.6.3 regression/*.inpfiles
	2.6.4 syn/syntrol/Makefile

	2.7 Diagnostic Messages
	2.7.1 Notice Messages
	2.7.2 Warning Messages
	2.7.3 Error Messages
	2.7.4 Abort Messages
	2.7.5 Internal Messages

	RTL Organization
	3.1 Building Blocks
	3.2 Using the Lx0/Lx0c/Lx1/Lx2 Design Hierarchies
	3.2.1 Module Definitions

	Local Memory
	4.1 Memory Architecture and Configurability
	4.1.1 Available Options
	4.1.2 IMEM and DMEM Controllers
	4.1.3 Configuring the Memory Architecture

	4.2 Memory Requirements
	4.2.1 RAM Function
	4.2.2 RAM Timing
	4.2.3 Critical Paths Involving RAMs

	4.3 Using Lexra's Generic RAM Models
	4.4 Using Library Vendors' RAM Models
	4.5 Direct Memory Access to Internal RAMs
	4.5.1 Using Request/Grant
	4.5.2 Using Dual Ported Memories

	4.6 Invalidating a Cache
	4.6.1 Invalidating a Cache Completely
	4.6.2 Invalidating a Cache Line with an Aliased Approach
	4.6.3 Invalidating a Cache Line by Uncached Reference
	4.6.4 Invalidating a Cache by Using DMA
	4.6.5 Invalidating a Cache Using Multi-port Memories
	4.6.6 Conclusion

	4.7 ICACHE Locking
	4.8 RAM Manufacturing or BIST Testing
	4.9 LX4280 Memory Specifics
	4.10 LX5280 Memory Specifics
	4.11 LX8000 Memory Specifics

	Using the LBC Interface
	5.1 Configuring the LBC with Lconfig
	5.1.1 Configuring a Synchronous/Asynchronous Interface
	5.1.2 Configuring Cache Policies
	5.1.3 Configuring Read and Write Buffer Sizes

	5.2 Lbus Device Design Rules
	5.2.1 LBUS Arbiters

	5.3 Device Interconnections
	5.3.1 Connecting the Protocol Signals Using OR Gates
	5.3.2 Connecting the Address, Data, and Command Busses

	5.4 Using CBUS

	Adding Instructions Using the Custom Engine Interface (CEI)
	6.1 Introduction
	6.2 Operation
	6.2.1 Instancing Custom Engines
	6.2.2 Interface Signals
	6.2.3 Available Opcodes

	6.3 Implementation Details
	6.3.1 Pipeline Issues and Stalls
	6.3.2 Exceptions and Invalidation
	6.3.3 Dual Issue Considerations
	6.3.4 Temporary Registers and MIPS-1 HI/LO
	6.3.5 Timing Considerations

	6.4 Waveforms

	Using the Coprocessor Interface (CI)
	7.1 Coprocessor Overview
	7.2 Coprocessor Design Considerations
	7.3 Coprocessor Waveforms

	EJTAG
	8.1 Architectural Overview: How It Works
	8.1.1 Hierarchy and Block Diagram
	8.1.2 Pinout Requirements
	8.1.3 Lexra JTAG TAP Controller
	8.1.4 COP0 Support: Debug Exception, Instructions, Registers
	8.1.5 Hardware Breakpoints
	8.1.6 Single-step Mode
	8.1.7 DMA Capability
	8.1.8 PC Trace

	8.2 Designing with EJTAG
	8.2.1 Single Processor Debugging
	8.2.2 Multi-processor Debugging
	8.2.3 Clocking
	8.2.4 Using the Lexra EJTAG TAP Controller
	8.2.5 Reset Issues
	8.2.5.1 Cold Reset
	8.2.5.2 Warm Reset
	8.2.5.3 Software Reset

	8.2.6 Gate Count per Breakpoint
	8.2.7 Memory Addressing
	8.2.8 EJTAG Customer Probe Model

	8.3 Implementation Issues
	8.3.1 Special Requirements
	8.3.2 Unimplemented Features from EJTAG Specification
	8.3.3 Implemented Optional Features from EJTAG Specification

	Testability
	9.1 Internal Scan
	9.1.1 Scan Methodology Overview
	9.1.2 Internal Scan Options
	9.1.3 Lconfig Options
	9.1.4 Internal Scan Interface
	9.1.5 Scan Enable Distribution

	9.2 Memory Scan Collar
	9.2.1 Scan Collar Overview
	9.2.2 Lconfig Option
	9.2.3 Scan Collar Interface

	9.3 RAM Testing
	9.3.1 RAM Test
	9.3.2 Lconfig Option
	9.3.3 RAM Test Interface

	9.4 ATPG Vectors
	9.4.1 ATPG Overview
	9.4.2 ATPG Generation Process

	9.5 Testability Statistics
	9.5.1 Overview
	9.5.2 Example
	9.5.3 Interpreting ATPG Results

	9.6 TAP Controller
	9.7 Additional Considerations for Reset and Clock Distribution.
	9.7.1 Clock Distribution
	9.7.2 SLEEP and Clock Distribution
	9.7.3 Reset Distribution

	Using the Rundvt Regression Environment
	10.1 Rundvt Simulators
	10.2 Setup
	10.3 Using the Command-line Options
	10.3.1 Standard Command-Line Options
	10.3.2 Advanced Options
	10.3.3 Passing Tests to Rundvt Through the Command Line

	10.4 Working with Test Lists
	10.4.1 Test List File Format
	10.4.2 Running Tests at the Rundvt Command Line

	10.5 Simulation Flow
	10.6 Generating ASCII Traces in the Simulation Output
	10.6.1 Tracing Through Hierarchical References
	10.6.2 Sparse Memory Tracing

	Synthesizing the Lexra CPU
	11.1 Overview
	11.2 Setting up the Synthesis Environment
	11.2.1 .synopsys_dc.setup
	11.2.2 dont_use.scr
	11.2.3 techvars.scr
	11.2.4 Using Pre-defined Technologies
	11.2.5 Synthesis Wire Load Models

	11.3 Running Synthesis
	11.4 Synthesis Output Files
	11.5 Considerations
	11.5.1 Synthesizing Clock Trees
	11.5.2 Back-end and IPO Considerations
	11.5.3 Reordering Scan Chains
	11.5.4 Library Recommendations

	11.6 Structure of the Synthesis Environment

	Simulation Guidelines
	12.1 Verilog
	12.1.1 Verilog Macro Definition on Simulator Command Line
	12.1.2 Verilog System Function $test$plusargs
	12.1.3 Verilog Simulator Specific Options

	12.2 RAM Models
	12.3 Reset
	12.4 Testbed Models
	12.5 Libraries
	12.6 Gate Level Simulation
	12.6.1 Back Annotation

	12.7 Asynchronous-mode LBC
	12.8 Runtime Limitations

